首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SYNOPSIS Dihydrofolate reductase (E.C. 1.5.1.3) from Plasmodium falciparum and from its host, the owl monkey (Aotus trivirgatus). were partially purified and characterized. The molecular weight of the parasite enzyme was estimated to be over 10 times as high as that of the host enzyme. The host enzyme had 2 pH optima whereas the parasite enzyme only one. The activity of the host enzyme was greatly stimulated by KCI and urea, while that of the parasite enzyme was inhibited at high concentrations of such chaotropic agents. Km of the parasite enzyme was significantly higher than that of the host enzyme. The parasite enzyme had much lower Ki for pyrimethamine than the host enzyme. Dihydrofolate reductases isolated from pyrimethamine-resistant and pyrimethaminesensitive strains of P. falciparum were found to be similar.  相似文献   

2.
The observation of remarkable karyotypic variation in owl monkeys (Aotus trivirgatus) stimulated us to study the chromosomal evolution of this New World genus. As an extension of this project, we examined the chromosome complement of a “phenotype-B” Aotus population from Peru. In addition to karyotype V(2n = 46), two new karyotypes with diploid numbers of 47 and 48 were identified. A G-band comparison of these karyotypes indicated that the chromosome number polymorphism in these Peruvian owl monkeys resulted from a single fusion or fission event involving a single metacentric and two acrocentric chromosome pairs. This mechanism is also known to be responsible for the chromosome number polymorphism in at least two other populations of phenotype B Aotus, one from Colombia and the other from Panama.  相似文献   

3.
The X-chromosomal locality of the red-green-sensitive opsin genes has been the norm for all mammals and is essential for color vision of higher primates. Owl monkeys (Aotus), a genus of New World monkeys, are the only nocturnal higher primates and are severely color-blind. We demonstrate that the owl monkeys possess extra red-green opsin genes on the Y-chromosome. The Y-linked opsin genes were found to be extremely varied, in one male appearing to be a functional gene and in other males to be multicopy pseudogenes. These Y-linked opsin genes should offer a rare opportunity to study the evolutionary fate of genes translocated to the Y chromosome.  相似文献   

4.
This immunohistochemical study of luteinizing hormone-releasing hormone (LHRH) in the olfactory bulbs in primates was undertaken in order to see whether there was an LHRH innervation in these species similar to that found in rodents. One old world (Macaca fascicularis) and two new world (Saimiri sciureus and Aotus trivirgatus) monkeys were studied. Aotus trivirgatus was of particular interest as it is noctural and so presumably more dependent upon olfactory cues. Animals were perfused with fixative, olfactory bulbs removed and sectioned, and tissues reacted immunocytochemically using LR1 (Benoit) antiserum to LHRH. Some LHRH innervation was found in the olfactory bulbs of all three species, comprising a few LHRH neurons and many fibers that ramified within the bulbs. The accessory bulb (not present as a distinct entity in old world primates) had more LHRH innervation than did the main olfactory bulb. Aotus trivirgatus had the greatest representation of LHRH of the three species. The layer of the olfactory bulb with the greatest number of LHRH fibers was the external plexiform layer. This is also true in rodents. There is evidence that LHRH has a role in the mediation of olfactory cues in reproductive behavior in rodents. It is not known how LHRH functions within the olfactory system in primates. However, the fact that it is distributed similarly in the two groups suggests that it may serve a similar function.  相似文献   

5.
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1(-/-) mice compared with those from WT mice. Fibers from Sod1(-/-) mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1(-/-) mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1(-/-) mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1(-/-) mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle.  相似文献   

6.
7.
8.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.  相似文献   

9.
Muscle stem (satellite) cells are relatively resistant to cell‐autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P‐Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor‐beta (TGF‐β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age‐dependent myogenic activity of sera TGF‐β1, and its potential cross‐talk with systemic Wnt. We found that sera TGF‐β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF‐β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF‐β1 were inhibitory and young sera suppressed myogenesis if TGF‐β1 was activated. Our data suggest that platelet‐derived sera TGF‐β1 levels, or endocrine TGF‐β1 levels, do not explain the age‐dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF‐β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF‐β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF‐β receptor kinase inhibitor, which attenuated TGF‐β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF‐β1‐dependent block on muscle regeneration, identify physiological modalities of age‐imposed changes in TGF‐β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.  相似文献   

10.
This research evaluates the interobserver error when the macroscopic methods recommended by American and European anthropologists to estimate age at death of a skeleton, were applied to a sample of the Terry Collection (Smithsonian Institution, Washington D.C.). Although no statistical differences among observers were found for any of these methods, small dissimilarities suggest that techniques using a narrower scale of categories produce greater agreement among researchers. The present study is within a wider research project designed to evaluate the accuracy of these methods, when applied to an identified (age known) sample of 963 skeleton from the Terry Collection.  相似文献   

11.
    
Developing accurate methods to quantify age-related muscle loss (sarcopenia) could greatly accelerate development of therapies to treat muscle loss in the elderly, as current methods are inaccurate or expensive. The current gold standard method for quantifying sarcopenia is dual-energy X-ray absorptiometry (DXA) but does not measure muscle directly—it is a composite measure quantifying “lean mass” (muscle) excluding fat and bone. In humans, DXA overestimates muscle mass, which has led to erroneous conclusions about the importance of skeletal muscle in human health and disease. In animal models, DXA is a popular method for measuring lean mass. However, instrumentation is expensive and is potentially limited by anesthesia concerns. Recently, the D3-creatine (D3Cr) dilution method for quantifying muscle mass was developed in humans and rats. This method is faster, cheaper, and more accurate than DXA. Here, we demonstrate that the D3Cr method is a specific assay for muscle mass in mice, and we test associations with DXA and body weight. We evaluated the D3Cr method compared to DXA-determined lean body mass (LBM) in aged mice and reported that DXA consistently overestimates muscle mass with age. Overall, we provide evidence that the D3Cr dilution method directly measures muscle mass in mice. Combined with its ease of use, accessibility, and non-invasive nature, the method may prove to more quickly advance development of preclinical therapies targeting sarcopenia.  相似文献   

12.
    
Age-associated changes in the DNA methylation state can be used to assess the pace of aging. However, it is not understood what mechanisms drive these changes and whether these changes affect the development of aging phenotypes and the aging process in general. This study was aimed at gaining a more comprehensive understanding of aging-related methylation changes across the whole genome, and relating these changes to biological functions. It has been shown that skeletal muscle and blood monocytes undergo typical changes with aging. Using whole-genome bisulfite sequencing, we sought to characterize the genome-wide changes in methylation of DNA derived from both skeletal muscle and blood monocytes, and link these changes to specific genes and pathways through enrichment analysis. We found that methylation changes occur with aging at the locations enriched for developmental and neuronal pathways regulated in these two peripheral tissues. These results contribute to our understanding of changes in epigenome in human aging.  相似文献   

13.
We examined the effect of long-term exercise on the prevention of sarcopenia using a senescence-accelerated-prone mice (SAMP8) model. Mice were housed in a wheel cage for 25 weeks to increase voluntary exercise. At week 23, endurance running capacity was examined using a treadmill. In a treadmill running test, the wheel cage group had increased endurance running capacity, which suggests that aging-related loss of muscle function was recovered by long-term exercise. Mice were sacrificed and microarray analysis revealed that genes involved in protein synthesis and degradation were upregulated in the skeletal muscles of the wheel cage group, suggesting accelerated protein turnover. Total body and adipose tissue weights decreased following the use of the wheel cage. Thus, long-term, spontaneous physical exercise may assist in recovering from aging-related sarcopenia (loss of muscle function) and obesity.  相似文献   

14.
    
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age‐related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient‐ and stress‐sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle‐derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age‐related diseases and contribute to the intertissue communication that underlies systemic aging.  相似文献   

15.
    
《Current biology : CB》2022,32(2):289-303.e6
  相似文献   

16.
    
In this paper, we evaluate the causes of differential skeletal preservation in the Windover Pond skeletal series (8BR246). We collected data on sex and age for approximately 110 individuals, and calculated a preservation score for each individual based on the presence of 80 skeletal landmarks. Our research questions evaluated the relationship between bone preservation and individual age and sex, and between the presence of preserved brain material and skeletal preservation, and the effects of burial location on bone preservation. The results indicate variability in average preservation for the sample (micro = 0.53, SD = 0.22) with an apparent lack of sex-specific (P = 0.79) or age-specific (P = 0.37) differences in preservation. The relationship between brain and skeletal preservation (P = 0.15) was not significant. The horizontal distribution of burials was not significantly correlated with skeletal preservation (north: r = -0.10, P = 0.93; east: r = 0.09, P = 0.45); however, vertical depth was a significant predictor of preservation (r = -0.31, P = 0.005), indicating that skeletal preservation decreased as burials were located closer to the ground surface. The observed variability in preservation scores may be related to the partial drying and resubmergence of the uppermost burials for the last few millennia. Comparison of Windover element-specific survival rates with previous analyses based on terrestrial samples (Galloway et al. [1997] Forensic taphonomy, Boca Raton: CRC Press; Waldron [1987] Death, decay and reconstruction, Manchester: Manchester University Press; Willey et al. [1997] Am J Phys Anthropol 104:513-528) affirms the relationship between element weight or density and bone survival. The unique taphonomic context of our study sample effected little change in bone deterioration processes.  相似文献   

17.
    
Mitochondrial DNA (mtDNA) deletion mutations co-localize with electron transport system (ETS) abnormalities in rhesus monkey skeletal muscle fibers. Using laser capture microdissection in conjunction with PCR and DNA sequence analysis, mitochondrial genomes from single sections of ETS abnormal fibers were characterized. All ETS abnormal fibers contained mtDNA deletion mutations. Deletions were large, removing 20-78% of the genome, with some to nearly all of the functional genes lost. In one-third of the deleted genomes, the light strand origin was deleted, whereas the heavy strand origin of replication was conserved in all fibers. A majority (27/39) of the deletion mutations had direct repeat sequences at their breakpoints and most (36/39) had one breakpoint within or in close proximity to the cytochrome b gene. Several pieces of evidence support the clonality of the mtDNA deletion mutation within an ETS abnormal region of a fiber: (a) only single, smaller than wild-type, PCR products were obtained from each ETS abnormal region; (b) the amplification of mtDNA from two regions of the same ETS abnormal fiber identified identical deletion mutations, and (c) a polymorphism was observed at nucleotide position 16103 (A and G) in the wild-type mtDNA of one animal (sequence analysis of an ETS abnormal region revealed that mtDNA deletion mutations contained only A or G at this position). Species-specific differences in the regions of the genomes lost as well as the presence of direct repeat sequences at the breakpoints suggest mechanistic differences in deletion mutation formation between rodents and primates.  相似文献   

18.
目的:观察6周负重训练和补充大豆多肽延缓I)_半乳糖大鼠骨骼肌衰老进程的作用效果,并探讨初步机制。方法:SD雄性大鼠3月龄60只,随机分为:6周安静组(C6)和6周模型组(M6)各6只,12周模型组(M12)、大负组(B12)、小负组(S12)、补肽组(P12)、补肽大负组(PB12)和补肽小负组(PS12)各8只,14月龄8只作为自然衰老组。分别于6周末和12周末处死大鼠,测试各项指标。结果:与C6相比,M6组大鼠各项指标出现不同程度的衰老表现;与M12组相比,负重或补肽可以显著提高各干预组大鼠骨骼肌超氧化物歧化酶(SOD)活力以及SOD/MDA,血清生长激素(GH)、胰岛素样生长因子I(IGF-I)含量和骨骼肌IGF-ImRNA表达量,降低骨骼肌丙二醛(MDA)含量,两种方式均具有明显的交互作用。结论:D-半乳糖6周皮下注射,能成功复制亚急性大鼠骨骼肌衰老模型,再经过6周负重训练或补肽均可以有效的缓解D-半乳糖大鼠骨骼肌的衰老进程,两者联合运用效果尤为明显。初步机制可能与减轻骨骼肌氧化应激以及脂质过氧化,纠正激素及相关因子的代谢紊乱,增加骨骼肌IGF-ImRNA的表达等有关。  相似文献   

19.
Summary Efficient utilization of divergent germ plasm sources in breeding cultivated Dactylis glomerata L. ssp. glomerata Domin depends on knowledge of quantitative variation within and among accessions. This study was undertaken to quantify variation and covariation for forage yield, maturity, disease reaction, and ground cover within a population of tetraploid Dactylis accessions. Variation was observed among families within the population for each variable. Most genetic variation (73%–93% of the family sums of squares) was within country sources or within accessions. Thus, country boundaries, which are traditionally important factors used in defining limits of plant exploration expeditions, have limited expected use in targeting future exploration for specific sources of high yield, disease resistance, or ground cover. Maturity was the exception to this; late-maturing accessions were identified as originating exclusively from the USSR. Some relationships among traits, such as that for yield and disease reaction, differed for accessions and cultivars. Several accessions and families within accessions were identified to have performance superior to most or all cultivars included in this study. Existing germ plasm from several countries was identified to have potential in breeding orchardgrass, while that from other countries appeared to have little or no potential in supplying germ plasm for hay production in humid-temperate environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号