首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白磷酸酶2A(protein phosphatase 2A,PP2A)是蛋白磷酸酶家族的主要成员,在蛋白质可逆磷酸化过程中与蛋白激酶一样起着举足轻重的作用。自然界存在很多天然毒素可特异性地作用于PP2A从而影响体内蛋白质的可逆磷酸化,其中微囊藻毒素由于急性肝毒性和强促癌活性日益引起关注。尽管确切的机制仍未探明,但从目前的研究来看,微囊藻毒素产生毒性的机制可能与其引起细胞氧化应激、DNA损伤、细胞骨架的破坏以及诱导细胞凋亡相关。而PP2A在氧化应激、DNA损伤修复及维持细胞骨架稳态中起着重要作用,并能调控凋亡相关激酶CaMKII和Bcl-2家族蛋白,这对更好地理解微囊藻毒素LR如何通过影响PP2A而产生毒作用提供了新思路。  相似文献   

2.
<正>细菌毒素的研究始于19世纪末分离出白喉毒素后,其后也分离并研究了其它细菌毒素。经查明大多数细菌毒素为蛋白性,并具有结合部位和活性功能。毒素分子具有结合功能的部分使毒素粘着于特定细胞的相应受体上,然后分子的活性部分施展毒性作用。研究结果指出没有结合部位的毒素分子不能体现生物学作用,尽管分子中仍保持具有活性功能的部位。 由于积累了许多有关细菌毒素的资料,有必要对其系统化和分类。在许多著作中都阐述了一些主要细菌毒素的分类法。Bonventre提出根据毒素分子的结构特点进行分  相似文献   

3.
细菌进入非吞噬细胞的机制包括拉链式机制和触发式机制。细菌的效应因子或毒力因子激活宿主细胞信号转导系统,引起肌动蛋白细胞骨架改变,从而进入非吞噬细胞。拉链式机制中,细菌通常需与宿主细胞相应受体结合,且不引发宿主细胞骨架大规模重排;触发式机制中,有更多细菌成分参与其中,且迅速引发大规模宿主细胞骨架反应,引起宿主细胞形态发生明显改变。两种机制中均贯穿着细菌因子与宿主细胞肌动蛋白细胞骨架成分之间的相互作用。这些机制为研究细菌致病以及探索新一代抗菌药物提供了理论基础。  相似文献   

4.
细菌成孔毒素是一类由成孔蛋白分泌、直接侵袭细胞膜并在细胞膜上形成孔结构、导致在正常情况下不能进入细胞内的离子和其他毒性细胞因子进入细胞内、引起细胞膨胀和细胞溶解的毒素,又名溶细胞毒素.  相似文献   

5.
原生动物的细胞骨架蛋白及其功能组件   总被引:1,自引:0,他引:1  
目前在原生动物中发现了许多新的细胞骨架蛋白,如中心元蛋白、副鞭毛杆蛋白等。深入研究发现,原生动物的细胞骨架在细胞的模式形成,细胞核的遗传中也具有重要作用。从功能组件角度着眼研究细胞骨架的功能,将有助于了解细胞骨架的进化机制。  相似文献   

6.
I型毒素-抗毒素(TA)系统在细菌基因组中广泛存在,在细菌的生长、生存中发挥多种生物学功能,包括抗菌、红细胞毒性、促进持留菌形成、抑制细菌生长或导致细菌休眠等。绝大部分I型毒素蛋白以细胞膜作为靶标,目前已知的一种作用机制是在细胞膜上形成孔洞结构,造成膜电位的下降或细胞膜的破坏,从而抑制ATP的合成或导致细菌死亡;另一种可能的作用机制是毒素蛋白作用在细胞膜上,改变细胞的形状,导致细胞进入休眠状态。I型毒素蛋白-细胞膜作用机制的复杂性和生物功能的多样性远超预期。因此,解析I型毒素蛋白在不同细胞膜中的组装机制及其所形成结构特征就变得非常重要,这也是揭示其结构-功能关系的关键。本文通过综述已报道的I型TA系统的结构特征与生物学功能,结合对其跨膜结构域的预测,探讨了其可能在细胞膜中形成的不同结构及其对功能的影响,分析了影响作用机制的关键因素。这些研究既给耐药细菌的治疗带来机遇,又为新型抗菌药物的研发带来思路。  相似文献   

7.
细胞运动、细胞迁移与细胞骨架研究进展   总被引:1,自引:0,他引:1  
苗龙 《生物物理学报》2007,23(4):281-289
细胞定向运动与细胞骨架的动态循环密切相关。运动细胞在其伪足前沿依靠细胞骨架的不断聚合推动细胞膜的前进,在基部靠近细胞体部位通过细胞骨架的不断解聚收缩拖拉细胞体向前运动,细胞骨架的聚合与解聚通过伪足与支撑表面的吸附与解吸附而偶连。肌动蛋白组成的微丝骨架是大多数运动细胞的主要成分。外界刺激引起微丝细胞骨架动态变化的信号通路已逐步明了。线虫精子细胞的运动行为与阿米巴变形运动相似,但是在线虫精子细胞中没有肌动蛋白,而是以精子主要蛋白为基础形成细胞骨架驱动精子细胞的运动。与肌动蛋白不同,精子主要蛋白没有分子极性、ATP结合位点和马达蛋白。通过比较研究以上两种运动体系将有助于在分子水平上进一步阐明细胞运动的机理。  相似文献   

8.
为探索铜绿假单胞菌粘附肠上皮细胞后,细胞骨架特性的变化规律及可能的机制。采用微管吸吮实验技术并结合细胞ELISA、图像分析等方法研究体外绿脓杆菌粘附肠上皮细胞后细胞骨架的变化。结果显示细菌粘附后1h肠上皮细胞活力即开始下降,3h后IEC面积明显减小,而细胞周长无明显变化;胞内骨架蛋白减少,且随孵育时间的延长愈趋明显;细胞弹性系数K1、K2在粘附后3h明显降低,同时伴有粘性系数μ也明显下降。以上结果表明绿脓杆菌粘附肠上皮细胞后,细胞骨架成分改变,细胞骨架功能受损害,最终导致细胞损伤。  相似文献   

9.
黄海艳  陈耀东 《微生物学通报》2017,44(11):2741-2747
自从1992年确定细菌分裂的关键蛋白Fts Z属于微管蛋白家族以来,越来越多的细菌细胞骨架蛋白被发现。原核生物中的微管同源蛋白主要有Fts Z、Cet Z、Tub Z和Btub A/B等。它们与微管蛋白具有相似的三级结构,可以结合鸟嘌呤-5′-三磷酸(Guanosine triphosphate,GTP)自聚合成不同的线状原丝纤维结构:单线状原丝纤维、双螺旋纤维结构或聚集成束状结构,在细菌细胞分裂、维持细胞形态、质粒分离等诸多重要生理功能中起着重要作用。  相似文献   

10.
Vinculin是一种细胞骨架蛋白兼粘着斑组成蛋白,主要分布于细胞 细胞连接处及细胞 细胞外基质(extracellular matrix, ECM)粘着斑部位.Vinculin通过与多种粘着斑蛋白、细胞骨架蛋白及细胞骨架F-肌动蛋白相结合并相互作用,参与细胞的力 化学信号转导,在细胞粘附、伸展、运动、增殖、存活等过程中起重要作用.本文结合本课题组研究工作,在介绍vinculin分子结构的基础上,对其在细胞力 化学信号转导中的作用做一综述.  相似文献   

11.
病原体细菌通过自身分泌系统分泌效应蛋白并注入宿主体内,修饰宿主的信号转导系统,破坏宿主细胞中天然免疫有关信号通路,发挥毒性作用使宿主产生疾病。吞噬作用在天然免疫系统中发挥重要作用,这个过程涉及肌动蛋白细胞骨架的重排。Rho(Ras homolog family)小G蛋白家族成员作为细胞骨架结构的重要调控蛋白可调节这一过程,其相关信号通路成为细菌效应蛋白的作用靶点。细菌效应蛋白可以模仿Rho的调节因子破坏信号通路,可以通过剪切Rho C-端的尾部结构使其从细胞膜解离并失去活性,可以直接模仿Rho发挥调控功能,可以影响Rho上游的调控事件影响其活性,也可通过对Rho进行直接的翻译后修饰使其失活,形成有利于细菌生存、繁殖、毒力释放的环境。由此导致的Rho信号通路功能紊乱使宿主产生智力缺陷、免疫功能障碍、癌症等多种疾病。  相似文献   

12.
肺炎链球菌触发肺Ⅱ型上皮细胞F-actin细胞骨架重排   总被引:1,自引:0,他引:1  
目的:通过体外实验,研究肺炎链球菌(Streptococcus pneumoniae,S.pn)是否可触发肺Ⅱ型上皮细胞(A549)信号转导途径触发微丝肌动蛋白(filamentous actin,F-actin)细胞骨架重排,进而侵袭A549细胞,并初步分析触发A549细胞F-actin细胞骨架重排的细菌亚组分。方法:采用F-actin特异性FITC-phalloidin荧光染料,观察S.pn作用A549细胞前后的F-actin细胞骨架重排情况,依照重排百分率得分标准以(%)表示;用F-actin细胞骨架重排抑制剂细胞松弛素D预处理A549细胞,观察S.pn对A549细胞侵袭的改变情况;用变溶菌素提取S.pn细胞壁以观察其对F-actin细胞骨架重排的影响。结果:S.pn作用A549细胞后,经FITC-phalloidin荧光染色,F-actin细胞骨架呈黄绿色块状聚集,对照细胞呈现均匀黄绿色荧光外观;F-actin细胞骨架重排抑制剂细胞松弛素D可明显降低S.pn对A549细胞的侵袭,在其浓度为0.25μg/ml时,未得到可测的细菌数;S.pn细胞壁作用A549细胞后,经FITC-phalloidn荧光染色,F-actin细胞骨架呈黄绿色块状聚集,二者存在剂量依赖性。结论:S.pn及其细胞壁亚组分可触发A549细胞F-actin细胞骨架重排,进而侵袭A549细胞。  相似文献   

13.
大肠杆菌毒素-抗毒素系统ccd(control of cell division or death system)编码的毒素蛋白CcdB使细胞内DNA促旋酶失活,杀伤宿主细胞,而抗毒素蛋白CcdA可以中和毒素CcdB使宿主存活。利用这个原理,CcdB可作为细菌转化时的筛选标记,在构建各种高效低背景载体上发挥重要作用。我们简要综述毒素蛋白CcdB的毒性原理及其在质粒载体构建中的广泛应用。  相似文献   

14.
对宿主细胞的侵袭是细胞内菌致病的关键步骤。细菌侵袭过程与Rho、Rac和Cdc42等Rho家族成员介导的肌动蛋白细胞骨架重排有关,涉及“拉链(zipper)”与“触发(trigger)”两种主要机制以及“拉链-触发(zipper-trigger)”双重机制。研究细菌侵袭过程中Rho家族的作用及相应细胞骨架事件,有助于揭示细菌侵袭的分子机制。  相似文献   

15.
微囊藻毒素对典型微生物生长及生理生化特性的影响   总被引:2,自引:0,他引:2  
研究了不同浓度微囊藻毒素对典型微生物大肠杆菌和枯草芽孢杆菌生长及生理生化特性的影响。微囊藻毒素对大肠杆菌和枯草芽孢杆菌的生长和细胞活性具有一定的剂量效应,较高浓度微囊藻毒素对其生长和活性有短时间的抑制作用,随着处理时间的延长,细胞的生长和活性逐渐恢复。细胞内可溶性糖和可溶性蛋白的含量,处理组和对照组相比均有先上升后下降的趋势。结果表明,微囊藻毒素的处理对大肠杆菌和枯草芽孢杆菌具有一定的胁迫作用,细胞通过调节细胞内可溶性蛋白和可溶性糖的含量来抵抗外界胁迫,但随着处理时间的延长,细菌逐渐适应了这种胁迫,恢复正常的生长。  相似文献   

16.
细胞骨架--肌动蛋白纤维   总被引:8,自引:1,他引:7  
20世纪60年代以来的研究发现,真核细胞质中存在着由蛋白纤维构成的复杂网络状结构——细胞骨架(cytoskeleton)。另外,植物细胞中也有细胞骨架成分。  相似文献   

17.
轻链钙调蛋白结合蛋白(light-chain Caldesmon,l-CaD)是一种重要的肌动蛋白结合蛋白,普遍存在于众多非肌肉细胞中。体外研究证明,l-CaD能通过与肌动蛋白的结合起到促进原肌动蛋白(G-actin)聚合、稳定肌动蛋白纤维(F-actin)结构的作用。在磷酸化作用下,l-CaD能从肌动蛋白纤维上脱离并促进肌动蛋白纤维的解聚。该研究拟考察l-CaD在细胞内对细胞肌动蛋白骨架的调节作用,阐明l-CaD对细胞运动能力的影响,作者将天然低表达l-CaD的人源性乳腺癌细胞MCF-7作为细胞模型,在MCF-7胞内以基因转染的方式高表达外源野生型l-CaD及其磷酸化突变株A1234-CaD(不可磷酸化CaD)、D1234-CaD(完全磷酸化CaD)。首先,通过激光共聚焦扫描,探讨了l-CaD对细胞骨架重排的调节;其次,通过细胞迁移transwell阵列,检测了l-CaD对细胞迁移能力的影响;最后,在单细胞层次上测定了细胞基底牵张力、胰酶刺激下的细胞基底脱附能力,并进一步检测了l-CaD对细胞迁移子过程中细胞伸张、收缩的影响。研究结果显示,l-CaD在胞内对细胞骨架的形成有显著的调控作用。非磷酸化l-CaD主要富集在细胞骨架上,增强了细胞骨架的强度,导致细胞基底牵张力以及对胰酶的耐受性增强,但对细胞的迁移能力有显著的抑制作用;磷酸化l-CaD跟细胞骨架结合能力很弱,对细胞的运动能力没有显著影响。通过磷酸化,l-CaD起到了一个“蛋白开关”的作用,通过控制细胞骨架的解聚、重排来调节细胞的运动能力。  相似文献   

18.
《现代生物医学进展》2013,(1):202-I0002
德国研究人员最新研究发现。一种细菌毒素可致细胞内的一种蛋白失活,致使细胞“自杀”。这一发现或有助于研究杀死癌细胞。相关成果发表在《生物化学期刊》(The Journal of Biological Chemistry)杂志上。  相似文献   

19.
脂质筏--病原微生物出入细胞的一种门户   总被引:1,自引:0,他引:1  
周一然  宋建国 《生命科学》2004,16(3):144-147,176
脂质筏是富含胆固醇和鞘磷脂的一种特殊膜结构,脂质筏形成的膜微区具有更低的膜流动性,呈现有序液相。脂质筏参与包括跨膜信号转导、物质内吞、脂质及蛋白定向分选在内的多种重要细胞生物学过程。分布于脂筏的分子主要有两种形式的蛋白修饰:与糖基磷脂酰肌醇(GPI)相连,或被肉豆蔻酸酰化/软脂酸酯酰化。一系列GPI-锚固蛋白被鉴定为多种不同的细菌、细菌毒素和病毒的受体。越来越多的研究发现,不同类型和种属来源的细菌、细菌毒素、原虫及病毒利用细胞质膜表面的脂筏结构介导其入胞,完成跨细胞转运、胞内复制或感染周期,一些病毒还利用脂筏完成其病毒颗粒的组装和出芽过程。通过对病原微生物如何利用脂筏介导其内吞及内吞入胞后在胞内的转运的研究,有利于我们更好地认识病原微生物与宿主细胞之间的相互作用,从而有可能发展更有效的抗感染策略。  相似文献   

20.
重组炭疽水肿因子的表达与生物活性分析   总被引:1,自引:0,他引:1  
炭疽毒素包括3种蛋白因子,即保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。EF是钙调蛋白依耐的腺苷酸环化酶,可使细胞cAMP浓度升高,导致宿主防御能力下降。为深入研究炭疽毒素的作用机理,构建了原核表达质粒,在大肠杆菌中表达出重组EF(rEF)。经鉴定,rEF以可溶形式表达于细菌胞质中。经过金属螯和层析、阳离子交换层析和凝胶层析,每升诱导培养物可获得约5mg 重组蛋白。用重组蛋白免疫家兔获得了兔多抗,能够在细胞试验中中和rEF,体外细胞试验显示rEF具有很好的生物活性,在J774A.1和CHO细胞试验中,能与LF共同竞争和PA的结合位点,相互抑制。上述工作为深入研究炭疽毒素的作用机理,开发针对EF的毒素抑制剂打下基础  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号