首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chi LM  Lam SL 《FEBS letters》2006,580(27):6496-6500
Slipped frameshift intermediates can occur when DNA polymerase slows or stalls at sites of DNA lesions. However, this phenomenon is much less common when unmodified DNA is replicated. In order to study the effect of templating bases on the alignment of primer-templates, NMR structural investigation has been performed on primer-template oligonucleotide models which mimic the situation that dNTP has just been incorporated opposite template. NMR evidence reveals the occurrence of misalignment when dGTP is incorporated opposite template T with a downstream nucleotide C. Depending on the template sequence, further extension of the primer can lead to realignment.  相似文献   

2.
The structural study of membrane proteins perhaps represents one of the greatest challenges of the post-genomic era. While membrane proteins comprise over 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers great potential not only with respect to structural characterization of integral membrane proteins but may also provide the ability to study the details of small ligand interactions. However, the size limitations of solution NMR have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small β-barrel proteins or helical proteins of relatively simple topology. In an effort to escape the barriers presented by slow molecular reorientation of large integral membrane proteins solubilized by detergent micelles in water, we have adapted the reverse micelle encapsulation strategy originally developed for the study of large soluble proteins by solution NMR methods. Here we review a novel approach to the solubilization of large integral membrane proteins in reverse micelle surfactants dissolved in low viscosity alkane solvents. The procedure is illustrated with a 54 kDa construct of the homotetrameric KcsA potassium channel.  相似文献   

3.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

4.
Isothermal titration calorimetry (ITC) has been applied to the determination of the activity of D-hydantoinase (EC 3.5.2.2) with several substrates by monitoring the heat released during the reaction. The method is based on the proportionality between the reaction rate and the thermal power (heat/time) generated. Microcalorimetric assays carried out at different temperatures provided the dependence of the catalytic rate constant on temperature. We show that ITC assay is a nondestructive method that allows the determination of the catalytic rate constant (kcat), Michaelis constant (KM), activation energy and activation Gibbs energy, enthalpy and entropy of this reaction.  相似文献   

5.
The three-dimensional structure of the outer membrane protein A from Klebsiella pneumoniae transmembrane domain was determined by NMR. This protein induces specific humoral and cytotoxic responses, and is a potent carrier protein. This is one of the largest integral membrane proteins (210 residues) for which nearly complete resonance assignment, including side chains, has been achieved so far. The methodology rested on the use of 900 MHz 3D and 4D TROSY experiments recorded on a uniformly 15N,13C,2H-labeled sample and on a perdeuterated methyl protonated sample. The structure was refined from 920 experimental constraints, giving an ensemble of 20 best structures with an r.m.s. deviation of 0.54 Å for the main chain atoms in the core eight-stranded β-barrel. The protein dynamics was assessed, in a residue-specific manner, by 1H-15N NOEs (pico- to nanosecond timescale), exchange broadening (millisecond to second) and 1H-2H chemical exchange (hour-weeks).  相似文献   

6.
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGXn in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGXn polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.  相似文献   

7.
8.
UvrB is a central DNA damage recognition protein involved in bacterial nucleotide excision repair. Structural information has been limited by the apparent disorder of the C-terminal domain 4 in crystal structures of intact UvrB; in solution, the isolated domain 4 is found to form a helix-loop-helix dimer. In order to gain insight into the behavior of UvrB in solution, we have performed NMR studies on [methyl-13C]methionine-labeled UvrB from Bacillus caldotenax (molecular mass=75 kDa). The 13 methyl resonances were assigned on the basis of site-directed mutagenesis and domain deletion. Solvent accessibility was assessed based on the relaxation and chemical shift responses of the probe methyl resonances to the stable nitroxide, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL). M632, located at the potential dimer interface of domain 4, provides an ideal probe for UvrB dimerization behavior. The M632 resonance of UvrB is very broad, consistent with some degree of monomer-dimer exchange and/or conformational instability of the exposed dimer interface. Upon addition of unlabeled domain 4 peptide, the M632 resonance of UvrB sharpens and shifts to a position consistent with a UvrB-domain 4 heterodimer. A dissociation constant (KD) value of 3.3 microM for the binding constant of UvrB with the domain 4 peptide was derived from surface plasmon resonance studies. Due to the flexibility of the domain 3-4 linker, inferred from limited proteolysis data and from the relaxation behavior of linker residue M607, the position of domain 4 is constrained not by the stiffness of the linking segment but by direct interactions with domains 1-3 in UvrB. In summary, UvrB homodimerization is disfavored, while domain 4 homodimerization and UvrB-domain 4 heterodimerization are allowed.  相似文献   

9.
A highly sensitive fluorogenic hexosaminidase substrate, fluorescein di(N-acetyl-beta-D-glucosaminide) (FDGlcNAc), was prepared essentially as described previously [Chem. Pharm. Bull. 1993, 41, 314] with some modifications. The fluorescent analog is a substrate for a number of hexosaminidases but here we have focused on the cytoplasmic O-GlcNAcase isoforms. Kinetic analysis using purified O-GlcNAcase and its splice variant (v-O-GlcNAcase) expressed in Escherichia coli suggests that FDGlcNAc is a much more efficient substrate (Km = 84.9 microM) than the conventional substrate, para-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (pNP-beta-GlcNAc, Km = 1.1 mM) and a previously developed fluorogenic substrate, 4-methylumbelliferyl 2-acetamido-2-deoxy-beta-D-glucopyranoside [MUGlcNAc, Km = 0.43 mM; J. Biol. Chem. 2005, 280, 25313] for O-GlcNAcase. The variant O-GlcNAcase, a protein lacking the C-terminal third of the full-length O-GlcNAcase, exhibited a Km of 2.1 mM with respect to FDGlcNAc. This shorter isoform was not previously thought to exhibit O-GlcNAcase activity based on in vitro studies with pNP-beta-GlcNAc. However, both O-GlcNAcase isoforms reduced O-GlcNAc protein levels extracted from HeLa and HT-29 cells in vitro, indicating that the splice variant is a bona fide O-GlcNAcase. Fluorescein di-N-acetyl-beta-D-galactosaminide (FDGalNAc) is not cleaved by these enzymes, consistent with previous findings that the O-GlcNAcase has substrate specificity toward O-GlcNAc but not O-GalNAc. The enzymatic activity of the shorter isoform of O-GlcNAcase was first detected by using highly sensitive fluorogenic FDGlcNAc substrate. The finding that O-GlcNAcase exists as two distinct isoforms has a number of important implications for the role of O-GlcNAcase in hexosamine signaling.  相似文献   

10.
Methods for the visualization of RNAs are urgently needed for studying a wide variety of cellular processes. Here we report on-bead screening of RNA libraries and its application to the isolation of specific fluorescence-enhancing RNA sequences. A one-bead-one-compound combinatorial RNA library with over one million different sequences was synthesized using the split-and-mix method. Solid-phase synthesis of 30 mer RNAs was performed on 15 ??m and 60 ??m diameter polystyrene beads bearing a non-cleavable linker. The RNA-derivatized beads were incubated with the well-established FlAsH pre-fluorophore and then screened for fluorescence enhancement, either by manually picking the brightest beads under a fluorescence microscope or by sorting with a FACS instrument. A protocol was established for sequence determination from single beads. While numerous RNA sequences showed increased fluorescence when immobilized, only few of them influenced the fluorescence properties of the FlAsH dye when detached from the beads. One of these sequences was found to induce a bathochromic shift in the excitation (from 492 to 510 nm) and emission (from 512 to 523 nm) maxima. This shift was accompanied by a 3.6-fold fluorescence enhancement of FlAsH fluorescence intensity. Mutation studies on the sequence revealed a rather robust structural motif.  相似文献   

11.
The Grb2 adapter protein is involved in the activation of the Ras signaling pathway. It recruits the Sos protein by binding of its two SH3 domains to Sos polyproline sequences. We observed that the binding of Grb2 to a bivalent ligand, containing two Sos-derived polyproline-sequences immobilized on a SPR sensor, shows unusual kinetic behavior. SPR-kinetic analysis and supporting data from other techniques show major contributions of an intermolecular bivalent binding mode. Each of the two Grb2 SH3 domains binds to one polyproline-sequence of two different ligand molecules, facilitating binding of a second Grb2 molecule to the two remaining free polyproline binding sites. A molecular model based on the X-ray structure of the Grb2 dimer shows that Grb2 is flexible enough to allow this binding mode. The results fit with a role of Grb2 in protein aggregation, achieving specificity by multivalent interactions, despite the relatively low affinity of single SH3 interactions.  相似文献   

12.
Isothermal titration calorimetry (ITC) was used to measure the binding affinity and thermodynamics of a cocaine-binding aptamer as a function of pH and NaCl concentration. Tightest binding was achieved at a pH value of 7.4 and under conditions of no added NaCl. These data indicate that ionic interactions occur in the ligand binding mechanism. ITC was also used to measure the binding thermodynamics of a variety of sequence variants of the cocaine-binding aptamer that analyzed which regions and nucleotides of the aptamer are important for maintaining high-affinity binding. Individually, each of the three stems can be shortened, resulting in a reduced binding affinity. If all three stems are shortened, no binding occurs. If all three of the stems in the aptamer are lengthened by five base pairs ligand affinity increases. Changes in nucleotide identity at the three-way junction all decrease the affinity of the aptamer to cocaine. The greatest decrease in affinity results from changes that disrupt the GA base pairs and the identity of T19.  相似文献   

13.
PACAP (pituitary adenylate cyclase-activating polypeptide) is a member of the VIP/secretin/glucagon family, which includes the ligands of class II G-protein coupled receptors. Since the recognition of PACAP by the receptor may involve the binding of PACAP to membranes, its membrane-bound structure should be important. We have carried out structural analysis of uniformly 13C,15N labeled PACAP27 and its C-terminal truncated form PACAP(1-21)NH2 (PACAP21) bound to membranes with high resolution solid-state NMR. Phosphatidylcholine bilayers and phosphatidylcholine/phosphatidylglycerol bilayers were used for PACAP27 and PACAP21, respectively. Most backbone signals were assigned for PACAP27 and PACAP21. TALOS analysis revealed that both peptides take on extended conformations on the membranes. Dilution of PACAP21 did not change the conformation of the major part. Selective polarization transfer experiment confirmed that PACAP27 is interacting with the membranes. It was concluded that the interaction of PACAP with the membrane surface causes their extended conformation. PACAP27 is reported to take an α-helical conformation in dodecylphosphocholine micelles and membrane-binding peptides usually take similar conformations in micelles and in membranes. Therefore, the property of PACAP27 changing its conformation in response to its environment is unique. Its conformational flexibility may be associated with its wide variety of functions.  相似文献   

14.
Increasing cellular O-GlcNAc levels through pharmacological inhibition of O-GlcNAcase, the enzyme responsible for removal of the O-GlcNAc post-translational modification, is being increasingly used to aid in discerning the roles played by this form of intracellular glycosylation. Interestingly, two forms of O-GlcNAcase have been studied; a full-length isoform that is better characterized, and a shorter nuclear-localized variant, arising from failure to splice out one intron, which has not been as well characterized. Given the increasing use of O-GlcNAcase inhibitors as research tools, we felt that a clear understanding of how these inhibitors affect both isoforms of O-GlcNAcase is important for proper interpretation of studies making use of these inhibitors in cell culture and in vivo. Here we describe an enzymatic characterization of the nuclear variant of human O-GlcNAcase. We find that this short nuclear variant of O-GlcNAcase, which has the identical catalytic domain as the full-length enzyme, has similar trends in a pH-rate profile and Taft linear free energy analysis as the full-length enzyme. These findings strongly suggest that both enzymes use broadly similar transition states. Consistent with this interpretation, the short isoform is potently inhibited by several previously described inhibitors of full-length O-GlcNAcase including PUGNAc, NAG-thiazoline, and the selective O-GlcNAcase inhibitor NButGT. These findings contrast with earlier studies and suggest that studies using O-GlcNAcase inhibitors in cultured cells or in vivo can be interpreted with the knowledge that both these forms of O-GlcNAcase are inhibited when present.  相似文献   

15.
Single crystal X-ray diffraction and high-resolution 1H and 13C NMR spectral data for 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosyl sulfamide, a selective inhibitor of carbonic anhydrase isozyme IX, are reported. The 0H5 was found to be the preferred form for this glycosyl sulfamide, both in the crystal lattice and in solution.  相似文献   

16.
BackgroundLong QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardiogram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1–3 constitute about 75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave morphology and triggering factors to prioritize the gene to be tested. We sought to identify the causative mutations and mutation spectrum, perform genotype-phenotype correlation and screen family members.MethodsThirty patients who fulfilled the criteria were enrolled. The most probable candidate gene among KCNQ1, KCNH2 and SCN5A were sequenced.ResultsOf the 30 patients, 22 were classified at LQT1, two as LQT2 and six as LQT3. Mutations in KCNQ1 were identified in 17 (77%) of 22 LQT1 patients, KCNH2 mutation in one of two LQT2 and SCN5A mutations in two of six LQT3 patients. We correlated the presence of the specific ECG morphology in all mutation positive cases. Eight mutations in KCNQ1 and one in SCN5A were novel and predicted to be pathogenic by in-silico analysis. Of all parents with heterozygous mutations, 24 (92%) of 26 were asymptomatic. Ten available siblings of nine probands were screened and three were homozygous and symptomatic, five heterozygous and asymptomatic.ConclusionsThis study in a cohort of Asian Indian patients highlights the mutation spectrum of common Long QT syndromes. The clinical utility for prevention of unexplained sudden cardiac deaths is an important sequel to identification of the mutation in at-risk family members.  相似文献   

17.
Bacterial bd-type quinol oxidases, such as cytochrome bd from Escherichia coli, contain three hemes, but no copper. In contrast to heme-copper oxidases and similarly to globins, single electron-reduced cytochrome bd forms stable complexes with O(2), NO and CO at ferrous heme d. Kinetics of ligand dissociation from heme d(2+) in the single electron- and fully-reduced cytochrome bd from E. coli has been investigated by rapid mixing spectrophotometry at 20 degrees C. Data show that (i) O(2) dissociates at 78 s(-1), (ii) NO and CO dissociation is fast as compared to heme-copper oxidases and (iii) dissociation in the single electron-reduced state is hindered as compared to the fully-reduced enzyme. Presumably, rapid ligand dissociation requires reduced heme b(595). As NO, an inhibitor of respiratory oxidases, is involved in the immune response against microbial infection, the rapid dissociation of NO from cytochrome bd may have important bearings on the patho-physiology of enterobacteria.  相似文献   

18.
Antimicrobial peptides (AMPs) are naturally occurring entities with potential as pharmaceutical candidates and/or food additives. They are present in many organisms including bacteria, insects, fish and mammals. While their antimicrobial activity is equipotent with many commercial antibiotics, current limitations are poor pharmacokinetics, stability and potential toxicology issues. Most elicit antimicrobial action via perturbation of bacterial membranes. Consequently, associated cytotoxicity in human cells is reflected by their capacity to lyse erythrocytes. However, more rigorous toxicological assessment of AMPs is required in order to predict potential failure at a later stage of development. We describe a high-content analysis (HCA) screening protocol recently established for determination and prediction of safety in pharmaceutical drug discovery. HCA is a powerful, multi-parameter bioanalytical tool that amalgamates the actions of fluorescence microscopy with automated cell analysis software in order to understand multiple changes in cellular health. We describe the application of HCA in assessing cytotoxicity of the cytolytic α-helical peptide, melittin, and selected structural analogs. The data shows that structural modification of melittin reduces its cytotoxic action and that HCA is suitable for rapidly identifying cytotoxicity.  相似文献   

19.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

20.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号