首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnitine acetyltransferase was purified from the cytoplasmic fraction of Candida tropicalis grown on alkanes in continuous culture. By ion-exchange chromatography the enzyme was resolved in two fractions with the same specific activity of 80 U/mg. The molecular mass of both enzyme forms, determined by non-denaturing gradient gel electrophoresis, was 540 kDa. After SDS electrophoresis only one band of 64 kDa was detected indicating that both enzymes are oligomers each containing eight subunits. Isoelectric focusing in agarose under non-denaturing conditions demonstrated the presence of at least four different charged species in the pH range between 5.6 and 6.7. After isoelectric focusing in 9 M urea/1% Nonidet P-40 gels, both enzyme forms were resolved into four bands. Peptide mapping, performed by cyanogen bromide cleavage of polypeptides separated by denaturing isoelectric focusing followed by second-dimension SDS electrophoresis, revealed a very high degree of homology between these polypeptides. The presence of the octameric form of carnitine acetyltransferase already in the starting material was demonstrated by non-denaturing gradient gel electrophoresis and immunoblotting. Antibodies against carnitine acetyltransferase from C. tropicalis ATCC 32113 formed precipitation lines with extracts from several Candida species but not with extracts of Candida utilis, Candida ethanothermophilum and an another strain of C. tropicalis.  相似文献   

2.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

3.
Purification and properties of carnitine acetyltransferase from human liver   总被引:2,自引:0,他引:2  
Carnitine acetyltransferase was purified from the supernatant obtained after centrifugation of human liver homogenate to a final specific activity of 78.75 unit.mg-1 with acetyl-CoA as a substrate. Human carnitine acetyltransferase is a monomer of 60.5 kDa with maximum activity in the presence of propionyl-CoA and a pH optimum of 8.7. Apparent Km values for acetyl-CoA are three times lower than for decanoyl-CoA. Km values for L-carnitine in the presence of acetyl-CoA are six times lower than in the presence of decanoyl-CoA. Km values for acetylcarnitine are three times lower than for octanoylcarnitine. The polyclonal antibodies against human carnitine acetyltransferase recognize a 60.5-kDa peptide in the purified preparation of human liver and brain homogenates and in immunoblots of mitochondrial and peroxisomal fractions from human liver. Immunoprecipitation and SDS/PAGE analysis of 35S-labelled proteins produced by human fibroblasts indicate that mitochondrial carnitine acetyltransferase is synthesized as a precursor of 65 kDa. We also purified carnitine acetyltransferase from the pellet obtained after centrifugation of liver homogenate. The pellet was extracted by sonication in the presence of 0.5% Tween 20. The chromatographic procedures for the purification and the kinetic, physical and immunological properties of pellet-extracted carnitine acetyltransferase are similar to those of carnitine acetyltransferase purified from the supernatant of human liver homogenate.  相似文献   

4.
Heart and liver mitochondrial, as well as liver peroxisomal, carnitine acetyltransferase was purified to apparent homogeneity and some properties, primarily of heart mitochondrial carnitine acetyltransferase, were determined. Hill coefficients for propionyl-CoA are 1.0 for each of the enzymes. The molecular weight of heart mitochondrial carnitine acetyltransferase, determined by SDS-PAGE, is 62,000. It is monomeric in the presence of catalytic amounts of substrate. Polyclonal antibodies against purified rat liver peroxisomal carnitine acetyltransferase precipitate liver and heart mitochondrial and liver peroxisomal carnitine acetyltransferase, but not liver peroxisomal carnitine octanoyltransferase. Liver peroxisomes, mitochondria, and microsomes and heart mitochondria all give multiple bands on Western blotting with the antibody against carnitine acetyltransferase. Major protein bands occur at the molecular weight of carnitine acetyltransferase and at 33 to 35 kDa.  相似文献   

5.
Scavenger receptors have been implicated in the development of atherosclerosis and other macrophage-associated functions. The structures and processing of type I and type II bovine macrophage scavenger receptors were examined using polyclonal anti-receptor antibodies. Pulse/chase metabolic labeling experiments showed that both types of scavenger receptors expressed in Chinese hamster ovary (CHO) cells behaved as typical cell surface membrane glycoproteins. They were synthesized as endoglycosidase H-sensitive precursors which were converted to endoglycosidase H-resistant mature forms expressed on the cell surface. The reduced precursor and mature forms were doublets on sodium dodecyl sulfate-gel electrophoresis, primarily because of heterogeneous N-glycosylation. The approximate molecular sizes were: type I precursor, 65/63 kDa; type I mature, 82/76 kDa; type II precursor, 57/53 kDa; and type II mature, 72/65 kDa. During post-translational processing, the cysteine-rich C terminus (SRCR domain) of some of the type I receptors was proteolytically removed to form a relatively stable, approximately 69-kDa degradation product. Type II receptors differ from type I receptors in that they do not have SRCR domains and an analogous proteolytic cleavage was not observed. Several experiments provided strong evidence that the Gly-X-Y-repeat domains in the scavenger receptors oligomerize into collagenous triple helices. For example, alpha,alpha'-dipyridyl, an inhibitor of the collagen-modifying enzymes prolyl and lysyl hydroxylases, interfered with both the kinetics and nature of post-translational receptor processing, and both precursor and mature forms of the receptors in intact cells could be cross-linked with difluorodinitrobenzene into reduction-resistant trimers. In intact cells, precursor receptor trimers (type I, 198 kDa; type II, 176 kDa) were assembled in the endoplasmic reticulum by the noncovalent association of monomers and Cys83-disulfide-linked dimers (type I, 129 kDa; type II, 119 kDa). When cells were lysed in the absence of the sulfhydryl trapping agent iodoacetamide, oxidation of the side chain of Cys17 in the cytoplasmic domain leads to the artifactual formation of reduction-sensitive covalently linked trimers. The approximate masses of the mature dimer and trimer forms were 162 and 237 kDa for type I receptors and 147 and 219 kDa for type II receptors. Cys83-disulfide-linked dimer formation was not required for function because mutant receptors (Cys83----Gly83) assembled into trimers of noncovalently associated monomers and exhibited normal receptor activity. Treatment of cells with difluorodinitrobenzene cross-linked some of the receptors into complexes larger than trimers, raising the possibility that the trimers may assemble into higher order oligomers.  相似文献   

6.
Y Gu  J Wu  C Faucheu  J L Lalanne  A Diu  D J Livingston    M S Su 《The EMBO journal》1995,14(9):1923-1931
Interleukin-1 beta converting enzyme (ICE) is composed of 10' (p10) and 20 kDa (p20) subunits, which are derived from a common 45 kDa precursor. Recent crystallographic studies have shown that ICE exists as a tetramer (p20/p10)2 in the crystal lattice. We provide evidence that the p10 and p20 subunits of ICE associate as oligomers in transfected COS cells. Using intragenic complementation, we show that the activity of a p10/p10 interface mutant defective in autoprocessing can be restored by co-expression with active site ICE mutants. Different active site mutants can also complement each other by oligomerization to form active ICE. These studies indicate that ICE precursor polypeptides may associate in different quaternary structures and that oligomerization is required for autoprocessing. Furthermore, integenic complementation of active site mutants of ICE and an ICE homolog restores autoprocessing activity, suggesting that hetero-oligomerization occurs between ICE homologs.  相似文献   

7.
Rat pheochromocytoma (PC12) cells grown in the presence or absence of nerve growth factor (NGF) were pulse-labeled with [35S]methionine or 32Pi, and neurofilament subunits were recovered by immunoprecipitation from cellular extracts. The neurofilament subunits, with apparent molecular masses on sodium dodecyl sulfate-polyacrylamide gels of 68 kDa (light, L), 145 kDa (medium, M), and 200 kDa (heavy, H), were all found to be expressed in PC12 cells grown in the absence and presence of NGF. H was expressed at very low levels and in a form that migrated more rapidly on sodium dodecyl sulfate gels than H from rat brain. M was synthesized as a more rapidly migrating precursor that underwent modification within 3 h after labeling to a slower migrating form that co-migrated with M from rat brain. Analysis of the different M species by two-dimensional gel electrophoresis indicated that they also had different isoelectric points consistent with differences in phosphate content. NGF treatment resulted in increased L synthesis and, to a lesser degree, M synthesis, but had no effect on H synthesis. NGF also increased the stability of the modified form of M. All three subunits were 32P-labeled, and NGF increased the incorporation of 32P into M and H. Neurofilament subunits were also immunoprecipitated from a soluble fraction of [35S]methionine-labeled PC12 cells. This soluble pool of subunits differed from the cytoskeleton-associated pool in the relative proportions of individual subunits, M being the predominant form in the former and L in the latter.  相似文献   

8.
Meprin A and B are disulfide-linked, tetrameric metalloendopeptidases in renal brush border membranes. Meprin A contains 90-kDa subunits (alpha subunits) and is expressed in random-bred and some inbred strains of mice. Meprin B contains subunits of 110 kDa (beta subunits) in situ, and the enzyme from C3H mice, a strain that does not express alpha subunits, has been characterized. Evidence from this and previous studies indicate that beta subunits are expressed in all mouse strains. The tetrameric organization of these meprins was examined in brush border membrane fractions from a random-bred strain (ICR) and two inbred strains of mice (C57BL/6 and C3H/He). Lectin blotting using biotinylated concanavalin A revealed that membranes from the random-bred strain contained three oligomeric complexes of approximately 390, 440, and 490 kDa as determined after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of reducing agents. The subunits in all three oligomers were linked by disulfide bridges. Western blotting using an anti-alpha monoclonal antibody indicated that alpha subunits (90 kDa) were present in the 390- and 440-kDa complexes. Western blotting with a polyclonal antibody specific for beta subunits (110 kDa) indicated the presence of these subunits in the 440- and 490-kDa complexes. Electroelution of the individual oligomers followed by SDS-PAGE under reducing conditions confirmed that the 390- and 490-kDa molecules are homotetramers of alpha and beta subunits, respectively, and that the 440-kDa molecule is a heterotetramer consisting of disulfide-bridged alpha and beta subunits. C57BL/6 mice expressed both alpha and beta subunits and contained tetramers composed of alpha 4 and alpha 2 beta 2. C3H/He mice expressed only the 110-kDa beta subunits and the beta 4 oligomer. This type of multimeric organization of disulfide-linked subunits is unique for the known endopeptidases.  相似文献   

9.
Different legumin protein domains act as vacuolar targeting signals.   总被引:21,自引:7,他引:14       下载免费PDF全文
Legumin subunits are synthesized as precursor polypeptides and are transported into protein storage vacuoles in field bean cotyledons. We expressed a legumin subunit in yeast and found that in these cells it is also transported into the vacuoles. To elucidate vacuolar targeting information, we constructed gene fusions of different legumin propolypeptide segments with either yeast invertase or chloramphenicol acetyltransferase as reporters for analysis in yeast or plant cells, respectively. In yeast, increasing the length of the amino-terminal segment increased the portion of invertase directed to the vacuole. Only the complete legumin alpha chain (281 amino acids) directed over 90% to the vacuole. A short carboxy-terminal legumin segment (76 amino acids) fused to the carboxy terminus of invertase also efficiently targeted this fusion product to yeast vacuoles. With amino-terminal legumin-chloramphenicol acetyltransferase fusions expressed in tobacco seeds, efficient vacuolar targeting was obtained only with the complete alpha chain. We conclude that legumin contains multiple targeting information, probably formed by higher structures of relatively long peptide sequences.  相似文献   

10.
DL-Aminocarnitine (3-amino-4-trimethylaminobutyric acid) and acetyl-DL-aminocarnitine (3-acetamido-4-trimethylaminobutyric acid) have been synthesized and the interactions of these compounds with carnitine acetyltransferase and carnitine palmitoyltransferase investigated. As anticipated from the low group transfer potential of amides, carnitine acetyltransferase catalyzes the transfer of acetyl groups from CoASAc to aminocarnitine (Km = 3.8 mM) but does not catalyze detectable transfer from acetylaminocarnitine to CoASH. Acetyl-DL-aminocarnitine is, however, a potent competitive inhibitor of carnitine acetyltransferase (Ki = 24 microM) and is bound to carnitine acetyltransferase about 13-fold more tightly than is acetylcarnitine, with which it is isosteric. DL-Aminocarnitine and, to a lesser extent, acetyl-DL-aminocarnitine are also inhibitors of the carnitine palmitoyltransferase activity of detergent-lysed rat liver mitochondria; in the presence of 1 mM L-carnitine, 5 microM aminocarnitine inhibits palmitoyl transfer by 64%. Significant acylation of aminocarnitine by palmitoyl-CoA was not observed. Neither aminocarnitine nor acetylaminocarnitine is significantly catabolized by mice; aminocarnitine is converted to acetylaminocarnitine in vivo. Both compounds are excreted in the urine. Mice given acetylaminocarnitine catabolize [14C]acetyl-L-carnitine and [14C]palmitate to 14CO2 more slowly than do control animals. Mice given acetylaminocarnitine and then starved are found to reversibly accumulate triglycerides in their livers; mice given the inhibitor but not starved do not show this effect.  相似文献   

11.
The biosynthesis and processing of the vacuolar (lysosomal) acid trehalase (molecular mass about 220 kDa) was followed in vivo using mutants conditionally defective in the secretory pathway. A precursor of 41 kDa was found in sec61 mutant cells deficient in translocation of secretory protein precursors into the lumen of the endoplasmic reticulum. Endoglycosidase H and N-glycosidase F treatment of purified acid trehalase in vitro resulted in a 41 kDa band, indicating that the precursor form found in sec61 mutant cells corresponds to the carbohydrate-free form of the enzyme. sec 18 mutant cells, blocked in the delivery of secretory proteins from the endoplasmic reticulum to the Golgi body accumulate a form with a molecular mass of 76 kDa which probably corresponds to a partially glycosylated precursor of the mature acid trehalase. This precursor partially disappears in favour of the appearance of a higher molecular weight component of 180 kDa in sec7 mutants which are blocked in the delivery step of secretory proteins from the Golgi body to the vacuole. In wild-type cells the fully glycosylated mature form of acid trehalase of about 220 kDa was observed accompanied by some 180 kDa and 76 kDa material.  相似文献   

12.
Nevertheless, a nonviable sperm population is present in the cauda epididymidis of many species. Degenerating spermatozoa release enzymes that could have detrimental effects on the viability of neighboring cells, and they are source of autoantigens that induce an autoimmune response if they escape the blood-epididymis barrier. Does the epididymis have specialized protective mechanism(s) to segregate the viable sperm population from defective spermatozoa? Previously, we identified a fibrinogen-like protein-2 (fgl2) that specifically binds to and polymerizes into a cocoon-like complex coating defective spermatozoa and sperm fragments. The objective of the present study is to identify the subunit composition of the fgl2-containing oligomers both in the soluble and cocoon-like complex. Our proteomic studies indicate that the 260/280 kDa oligomers (termed eFGL) contain two distinct disulfide-linked subunits; 64 kDa fgl2 and 33 kDa fgl1. Utilizing a PCR-based cloning strategy, the 33 kDa polypeptide has been identified as fibrinogen-like protein-1 (fgl1). Immunocytochemical studies revealed that fgl1 selectively binds to defective spermatozoa in the cauda epididymidis. Northern blot analysis and in situ hybridization demonstrated the high expression of fgl1 in the principal cells of the proximal cauda epididymidis. Co-immunoprecipitation analyses of cauda epididymal fluid, using anti-fgl2, demonstrate that both fgl1 and fgl2 are present in the soluble eFGL. Our study is the first to show an association of fgl1 and fgl2 both in the soluble and in the sperm-associated eFGL. We conclude that our results provide new insights into the mechanisms by which the potentially unique epididymal protein functions in the recognition and elimination of defective spermatozoa.  相似文献   

13.
The unfertilized egg envelope of medaka ( Oryzias latipes ) consists of two major groups of subunits, ZI-1,2 (74–76 kDa) and ZI-3 (49kDa). During egg envelope hardening after egg activation, both subunit groups decreased in amount, new protein bands of 57–65, 110 and 125 kDa appeared and, finally, no bands were detectable on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The 110 and 125 kDa bands are intermediates formed by polymerization of such subunit groups. In contrast, treatment with iodoacetamide, an inhibitor of polymerization, revealed that the 57–65 kDa intermediates originated from ZI-1,2 by limited hydrolysis. ZI-1,2 comprises at least three distinct proteins of quite similar structure with their N -termini undetectable by Edman degradation, while the 57–65 kDa intermediates also consist of at least three proteins with the same N -terminal amino acid sequence: DGKPSNPQQPQVPQYPSK-. This fact strongly suggests a participation of a protease in the conversion of ZI-1,2 into 57–65 kDa proteins. EDTA and 1,10-phenanthrolinium inhibited the conversion and both Ca2+ and Zn2+ recovered the inhibition. These results suggest that the assumed protease is a metalloprotease.  相似文献   

14.
Isocitrate lyase (IL) is an essential enzyme in the glyoxylate cycle, which is a pathway involved in the mobilization of stored lipids during postgerminative growth of oil-rich seedlings. We determined experimentally the necessary and sufficient peroxisome targeting signals (PTSs) for cottonseed, oilseed rape, and castor bean ILs in a well-characterized in vivo import system, namely, suspension-cultured tobacco (Bright Yellow) BY-2 cells. Results were obtained by comparing immunofluorescence localizations of wild-type and C-terminal-truncated proteins transiently expressed from cDNAs introduced by microprojectile bombardment. The tripeptides ARM-COOH (on cottonseed and castor bean ILs) and SRM-COOH (on oilseed rape IL) were necessary for targeting and actual import of these ILs into glyoxysomes, and ARM-COOH was sufficient for redirecting chloramphenicol acetyltransferase (CAT) from the cytosol into the glyoxysomes. Surprisingly, IL and CAT subunits without these tripeptides were still acquired by glyoxysomes, but only when wild-type IL or CAT-SKL subunits, respectively, were simultaneously expressed in the cells. These results reveal that targeting signal-depleted subunits are being piggybacked as multimers to glyoxysomes by association with subunits possessing a PTS1. Targeted multimers are then translocated through membrane pores or channels to the matrix as oligomers or as subunits before reoligomerization in the matrix.  相似文献   

15.
Carnitine acetyltransferase activity had been previously shown to occur in peroxisomes, mitochondria, and a membranous fraction of rat and pig hepatocytes. When components of this third subcellular fraction (plasma membranes, components of the Golgi apparatus, and microsomes) were further separated, carnitine acetyltransferase fractionated with the microsomes. Microsomes isolated by three different methods (isopycnic sucrose density zonal centrifugation, high-speed differential centrifugation, and aggregation with Ca2+ followed by low-speed differential centrifugation) all contained carnitine acetyltransferase activity. The lability of carnitine acetyltransferase in microsomes isolated by different methods and in different isolation media is reported.When total microsomes were subfractionated into rough and smooth components, carnitine acetyltransferase activity was found to the same extent in both and was tightly associated with the microsomal membrane. The microsomal enzyme was rapidly inactivated in 0.25 m sucrose or 0.1 m phosphate, but was stable for at least 2 weeks in 0.4 m KCl. Extensive treatment with high ionic strength salt solutions, 1% Triton X-100, or a combination of the two was used to solubilize microsomal carnitine acetyltransferase activity.Carnitine octanoyltransferase activity was also found in the microsomal fractions isolated by three different methods, but no carnitine palmitoyltransferase was detected in the microsomal fractions. It is proposed that microsomal carnitine acetyl- and octanoyltransferases could be involved in the transfer of acyl groups across the microsomal membrane, thereby providing a source of acetyl and other acyl CoA's at sites of acetylation reactions and synthesis.  相似文献   

16.
Phaseolin is the most abundant storage protein of bean seeds. To modify its amino-acidic composition by protein engineering, for the improvement of its nutritional value, regions which could be modified without detrimental effects on structural features of the protein must be identified. Data presented here, on the characterisation of the major storage protein of lima bean (Phaseolus lunatus L.) seeds, a phaseolin-like glycoprotein, provide good indications on one of such region. Phaseolus lunatus phaseolin consists of four major oligomers containing two subunit classes. Polypeptides of one class show a molecular mass ranging from 38.5 kDa to 32 kDa, while the molecular mass of polypeptides belonging to the other class ranges from 27 kDa to 21 kDa. The subunits originate from the cleavage of precursor forms, with molecular masses of 58 kDa and 54 kDa, which are still present — in residual amounts — in the mature protein. Comparison of their N-terminal sequences with those of the subunits demonstrate that cleavage occurs in a region of the molecule that instead remains uncleaved in phaseolins of the other species. Since this region can accommodate such a drastic modification, we suggest it could be a good candidate for in vitro manipulation.  相似文献   

17.
Peroxisomal NADP-linked isocitrate dehydrogenase (Ps-NADP-IDH) was purified for the first time from Candida tropicalis cells grown on n-alkane as a carbon source, which was effective in proliferation of peroxisomes. The properties of Ps-NADP-IDH were compared with those of mitochondrial NAD-linked isocitrate dehydrogenase (Mt-NAD-IDH) purified from the cells grown on acetate, in which peroxisomes did not proliferate. Ps-NADP-IDH was a homodimer of identical subunits (45 kDa), while Mt-NAD-IDH was suggested to be a heterooctamer composed of two types of subunits with different molecular masses (41 and 38 kDa). Kinetic studies revealed that Ps-NADP-IDH gave Michaelis-Menten saturation curves against isocitrate and NADP concentrations, whereas Mt-NAD-IDH was an allosteric enzyme regulated by ATP, AMP, and citrate. Inhibition by 2-oxoglutarate, a precursor of glutamate, was observed only for Ps-NADP-IDH. Both enzymes were inhibited by concomitant addition of oxalacetate and glyoxylate. The function of Ps-NADP-IDH seems to be completely discriminated from that of Mt-NAD-IDH as reflected by their distinct subcellular localizations. Furthermore, the properties of Ps-NADP-IDH were also compared with those of other mitochondrial and cytosolic IDHs from sources reported previously.  相似文献   

18.
Primary carnitine deficiency is caused by impaired activity of the Na+-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.  相似文献   

19.
Mosquito vitellogenin subunits originate from a common precursor   总被引:1,自引:0,他引:1  
Using a cell-free translation system, we demonstrated that the two subunits of mosquito vitellogenin (VG), 200 kDa and 65 kDa, originate from a common precursor. The precursor polypeptide of 220 kDa is a translation product specific to mRNA from vitellogenic mosquitoes. In immunoprecipitation analysis, the 220-kDa polypeptide was recognized by monoclonal antibodies directed either to the large or the small VG subunit. Peptide mapping showed homology between the 220-kDa polypeptide and both subunits, thus providing further proof that the 220-kDa product of translation is the precursor for both VG subunits. In the presence of microsomal membranes, the molecular size of the VG precursor increased to 235 kDa suggesting this as a first step in co-translational modifications of VG.  相似文献   

20.
Genes encoding subunits of complex I (EC 1.6.5.3 [EC] ) of the mitochondrialrespiratory chain vary in their locations between the mitochondrialand nuclear genomes in different organisms, whereas genes fora homologous multisub-unit complex in chloroplasts have to dateonly been found on the plastid genome. In potato (Solatium tuberosumL.), the gene coding for the mitochondrial 76 kDa iron-sulphurprotein is identified in the nuclear genome. The gene is transcribedinto polyadenylated mRNA which is most abundant in flowers,and more frequent in tubers than in leaves. The amino acid sequenceis well conserved relative to the nuclear-encoded 75 kDa and78 kDa subunits of Bos taurus and Neurospora crassa, respectively,and to the Paracoccus denitrificans homologue, most prominentlyin the region presumed to carry the iron-sulphur clusters. Polyclonalantibodies directed against the 78 kDa complex I subunit ofN. crassa recognise the 76 kDa polypeptide in potato mitochondrialcomplex I, and additionally a polypeptide of 75 kDa in solubilisedstroma thylakoids from spinach chloroplasts. The 32 amino acidresidues long presequence of the potato mitochondrial 76 kDacomplex I subunit targets the precursor polypeptide into isolatedpotato mitochondria but not into isolated chloroplasts. Theseresults suggest that chloroplast stroma thylakoids contain aprotein similar in size and antigenicity to, but geneticallydistinct from, the mitochondrial subunit. 1 To whom correspondence should be addressed. 4 Present address: Max-Planck-Institut für Molekulare Genetik,Ihnestrasse 73, D-14195, Berlin, Germany. 5 Present address: Bioinside GmbH, Potsdamer Strasse 18A, D-14513Teltow, Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号