首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

2.
Structural studies were carried out on the teichoic acids in cell walls of Listeria monocytogenes serotypes 3a, 4b, 4f, 6, and 7. The structure of the dephosphorylated repeating units, obtained by treatment with 46% hydrogen fluoride or alkaline hydrolysis, was examined by methylation analysis, acetolysis, and 1H-NMR spectroscopy. The results of Smith degradation of the teichoic acids and 13C-NMR spectroscopy led to the following most likely structures of the repeating units of the teichoic acids:----1-[N-acetylglucosaminyl(alpha 1----4)]ribitol-5-phosphate----for serotype 3a,----4-[galactosyl(alpha 1----6)][glucosyl(beta 1----3)]N -acetylglucosaminyl(beta 1----2)ribitol-5-phosphate----for serotype 4b,----4-[galactosyl(alpha 1----6)][N -acetylglucosaminyl(alpha 1----3)]N-acetylglucosaminyl(beta 1----2)ribitol -5-phosphate----for serotype 4f,----4-N-acetylglucosaminyl(beta 1----4)ribitol -5-phosphate----for serotype 6, and----1-ribitol-5-phosphate----for serotype 7. About 40% of the repeating units of the teichoic acid from serotype 4f were not substituted at C-3 of beta-N-acetylglucosaminyl residues.  相似文献   

3.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

4.
The capsular polysaccharide of Klebsiella serotype K40 contained D-mannose, D-glucuronic acid, D-galactose, and L-rhamnose in the approximate molar ratios 1:1:1:2. The primary structure of the capsular polysaccharide has been investigated mainly by methylation analysis, periodate oxidation, characterization of oligosaccharides, base degradation reaction, and 1H and 13CNMR spectroscopy. The polysaccharide does not contain any pyruvic acetal or O-acetyl substitution. It has a pentasaccharide repeating unit of the following primary structure: alpha-D-Manp 1----4 ----4)-beta-D-GlcpA-(1----2)-alpha-L-Rhap-(1----3)-beta-D-Ga lp-(1----2)-alpha- L-Rhap-(1----.  相似文献   

5.
The lipopolysaccharide (LPS) molecule is an important virulence determinant in Klebsiella pneumoniae. Studies on the serotype O1 LPS were initiated to determine the basis for antigenic heterogeneity previously observed in the O1 side chain polysaccharides and to resolve apparent ambiguities in the reported polysaccharide structure. Detailed chemical analysis, involving methylation and 1H- and 13C-nuclear magnetic resonance studies, demonstrated that the O-side chain polysaccharides of serotype O1 LPS contained a mixture of two structurally distinct D-galactan polymers. The repeating unit structures of these two polymers were identified as [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] (D-galactan I) and [----3)-alpha-D-Galp-(1----3)-beta-D-Galp-(1----] (D-Galactan II). D-Galactan I polysaccharides were heterogeneous in size and were detected throughout the sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) profile of O1 LPS. In contrast, D-galactan II was confined to the higher-molecular-weight region. The structures of the two D-galactans were not influenced by simultaneous synthesis of a capsular K antigen. Apparently, neither of the D-galactans constitutes a common antigen widespread in Klebsiella spp. as determined by immunochemical analysis. Examination of the LPSs in mutants indicated that expression of D-galactan I can occur independently of D-galactan II. Transconjugants of Escherichia coli K-12 strains carrying the his region of K. pneumoniae were constructed by chromosome mobilization with RP4::mini-Mu. In these transconjugants, the O antigen encoded by the his-linked rfb locus was determined to be D-galactan I, suggesting that genes involved in the expression of D-galactan II are not closely linked to the rfb cluster.  相似文献   

6.
The serotype-specific capsular polysaccharide from two strains of Pasteurella haemolytica serotype T4 organisms was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, has the backbone structure ----(2-glycerol-l)----(phosphate)----(6-alpha-D-galactose-1)---- and is partially O-acetylated on the C2 and C3 galactose residues. Chemical removal of O-acetyl groups from the polysaccharide destroyed both its ability to precipitate with antiserum raised against killed whole serotype T4 organisms and its ability to adhere to sheep erythrocytes in passive haemagglutination experiments. Attempts to elicit antisera using the purified polymer were unsuccessful but a partially purified material was immunogenic.  相似文献   

7.
The biochemical and morphological characteristics of polysaccharides synthesized from sucrose by extracellular enzymes from D-glucose-grown Streptococcus mutans representing serotypes a-g were compared. The polysaccharides synthesized by the enzymes from serotypes a, d, and g formed visible aggregates and firmly adhered to glass surfaces, whereas those formed by the enzymes from serotypes b, c, e, and f floated homogeneously and were poorly adherent. The enzymes of serotypes a, d, and g produced large amounts of water-insoluble polysaccharides (IPs, D-glucans), and those of serotypes b, c, e, and f water-soluble polysaccharides (SPs, D-glucans and D- fructans ). As compared with the IPs of serotypes b, c, e, and f, the IPs of serotypes a, d, and g (a) contained a higher proportion of (1----3)-alpha-D-glucosidic linkages and alpha-D-(1----3,6) branch linkages; (b) showed higher susceptibility to (1----3)-alpha-D-glucanase (serotype a excepted) and lower (1----6)-alpha-D-glucanase sensitivity; (c) contained larger amounts of high-molecular-weight fractions; (d) showed higher intrinsic viscosities (serotype b excepted); and (e) had lower S. mutans cell-agglutination activities. On electron-microscope observation, the IPs of all serotypes showed two fibrillar components; a double-stranded fibril, with short, fluffy protrusions extending out of its periphery, and a fine, single-stranded fibril. Thus, the serotypes could be divided into two major groups: a, d, and g; and b, c, e, and f. No similar grouping of serotypes was indicated by the chemical and morphological properties of SPs.  相似文献   

8.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

9.
Capsular polysaccharide from two strains of Pasteurella haemolytica serotype T15 was purified and characterized by chemical analysis and NMR spectroscopy. The polymer, a teichoic acid, proved to be very similar in structure to the capsular polysaccharide of P. haemolytica serotype T4 and identical to the previously described K62 (K2ab) capsular polysaccharide of Escherichia coli, and the capsular polysaccharide of Neisseria meningitidis serotype H, i.e. ----(2-glycerol-3)----(phosphate)----(4-alpha-D-galactopyranose -1)---- with partial O-acetylation on the galactose residues. Electron microscopy with Protein A-gold labelled antisera showed that the polysaccharide was peripherally located on the surface of all three organisms. Chemical removal of O-acetyl groups from the polysaccharide yielded a structure identical to that previously described for E. coli K2 (K2a). Both O-acetylated and de-O-acetylated P. haemolytica T15 polymers, when absorbed on to sheep erythrocytes in passive haemagglutination assays, yielded identical antibody titres with sera raised against P. haemolytica T15, E. coli K2 or N. meningitidis H whole cells. De-O-acetylation of the Pasteurella polysaccharide influenced its precipitability with immune sera, but this could not be related to the absence of O-acetyl groups because the non-acetylated E. coli K2 polymer readily precipitated with a line of 'identity' with the acetylated P. haemolytica T15 polymer.  相似文献   

10.
The gelling polysaccharide produced by a species of Enterobacter (NCIB 11870) contains L-fucose, D-glucose, and D-glucuronic acid in the ratios 1:2:1. Analysis of the methylated and methylated, carboxyl-reduced polysaccharide revealed terminal non-reducing glucose, (1----3)-linked fucose, (1----3,1----4)-linked glucose, and (1----4)-linked glucuronic acid in the ratios 1:1:1.2:0.8. From the results of Smith degradation of the polysaccharide and spectroscopic studies of the acidic tetra- and octa-saccharides produced by bacteriophage-induced enzymic depolymerization of the polysaccharide, the following tetrasaccharide repeating-unit is proposed. (Formula: see text). This repeating-unit is identical to that of the capsular polysaccharide produced by Klebsiella aerogenes serotype K54 except for the absence of O-acetyl groups. The effects of the O-acetyl groups on the secondary structure and rheological properties of these polysaccharides are discussed.  相似文献   

11.
Cell-wall lipopolysaccharide isolated from Pasteurella haemolytica serotype T3 using the phenol-water extraction procedure was shown to be an S type lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Hydrolysis with mild acid afforded a lipid-free, antigenic O-chain polysaccharide. On the basis of one- and two-dimensional 1H and 13C nuclear magnetic resonance studies, in conjunction with microanalytical chemical methods, the O-polysaccharide was determined to be a linear polymer of a disaccharide repeating unit having the structure. [----3)-beta-D-G1cpNAc-(1----4)-alpha-L-Rhap-(1----]n  相似文献   

12.
On mild acid degradation of the Pseudomonas cepacia strain IMV 4176 lipopolysaccharide, two polysaccharides were obtained, one of which is a homopolymer of N-acetyl-D-galactosamine and the other is composed of equal amounts of N-acetyl-D-galactosamine and D-ribose. Partial hydrolysis with aqueous oxalic acid caused depolymerization of the heteropolysaccharide, and the homopolysaccharide was isolated in the individual state. On the basis of methylation and 13C NMR analysis, it was concluded that both polysaccharides are built up of disaccharide repeating units having the following structures: ----4)-alpha-D-GalpNAc-(1----4)-beta-D-GalpNAc-(1---- and ----4)-alpha-D-GalpNAc-(1----2)-beta-D-Ribf-(1----. The heteropolysaccharide from P. cepacia strain 4176 is identical by the structure of the repeating unit to the O-specific polysaccharide of P. cepacia strain IMV 4202 (serotype 3), Pseudomonas aeruginosa O12 and Serratia marcescens O14.  相似文献   

13.
A polysaccharide isolated from the degraded lipopolysaccharides of P. aeruginosa serogroup O7 (Lányi--Bergan classification) was characterized by liquid chromatography, acid hydrolysis, and 1H and 13C NMR spectroscopy. It has molecular mass 15,000 and represents mainly a rhamnan of the structure----2)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1 ----, identical to the structure of O-specific polysaccharides of Pseudomonas aeruginosa pvs morsprunorum and cerasi. Some minor constituents, such as glucose, mannose, an unknown sugar, and phosphate, are found in the polysaccharide preparation as well. Distribution of the rhamnan in some other P. aeruginosa serogroups is discussed and its identity to the common polysaccharide antigen of P. aeruginosa is suggested.  相似文献   

14.
A large number of patients with acquired immune deficiency syndrome develop disseminated infections due to member serotypes of the Mycobacterium avium complex. Seroagglutination on 181 such isolates followed by enzyme-linked immunosorbent assay and thin layer chromatography of the type-specific glycopeptidolipid (GPL) antigens demonstrated that the majority of serotypes were M. avium serotype 4. The specific GPL of serotype 4 was isolated in both the native, acetylated, and the deacetylated forms and its oligosaccharide hapten released as the oligosaccharide alditol by reductive beta-elimination. A comprehensive structural analytical approach developed for more complex carbohydrates was applied to the oligosaccharide alditol in order to reveal glycosyl and glycosyl-linkage composition, sequence arrangements, ring forms, and enantiomeric and anomeric configurations. The structure of the triglycosyl alditol was established as, 4-O-Me-L-Rhap-(alpha 1----4)-2-O-Me-L-Fucp-(alpha 1----3)-L-Rhap- (alpha 1----2)-6-deoxytalitol, in which the nonreducing-end disaccharide unit is unique to serotype 4. The native GPL antigen is diacetylated, presumably at other than the terminal disaccharide, since the antigenicity of both the acetylated and deacetylated antigens are comparable. The structure of the epitope of the type-specific antigen of serotype 4 will serve as the basis for synthetic antigen probes and the target for the monoclonal antibodies required to trace the origins in the environment of the infectious agent and study the epidemiology of human infections.  相似文献   

15.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

16.
Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose–glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.  相似文献   

17.
The polysaccharide chain of Proteus vulgaris O19 lipopolysaccharide contains D-galactose, N-acetyl-D-glucosamine N-acetyl-D-galactosamine and N-acetyl-L-fucosamine in the ratio 1:1:1:1. The structure of the polysaccharide was established by full acid hydrolysis and methylation analysis, as well as by non-destructive methods, i.e. the computer-assisted evaluation of the 13C-NMR spectrum and computer-assisted evaluation of the specific optical rotation by Klyne's rule. The polysaccharide is regular and built up of tetrasaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp-(1----3)-beta-D-GlcNAcp-(1----3)-alph a-D-Galp- (1----4)-alpha-D-GalNAcp-(1---- The O19-antiserum cross-reacts with lipopolysaccharide from P. vulgaris O42, the structure of which is still unknown. No cross-reactions were observed with O-polysaccharides Pseudomonas aeruginosa O7 and Salmonella arizonae O59 in spite of some structural similarities.  相似文献   

18.
The aqueous-phase lipopolysaccharide isolated from Pasteurella haemolytica serotype T10 cells by the phenol-water extraction method was found to be S-type lipopolysaccharide which possessed O-antigenic polysaccharide chains composed only of D-galactose residues. Structural analysis of the O-polysaccharide, using a combination of 1D and 2D 1H- and 13C-n.m.r. methods, led to the identification of the disaccharide repeating-unit as [----3)-alpha-D-Galp-(1----3)-beta-D-Galf-(1----]n. The serological cross-reactivity between P. haemolytica serotypes T4 and T10 can now be related to the structural similarity of the antigenic LPS O-polysaccharides.  相似文献   

19.
We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis of the O antigen of lipopolysaccharide in gram-negative bacteria. The cell extract of Escherichia coli expressing each of the cloned genes of S. mutans exhibited enzymatic activity corresponding to the homologous counterpart of the rfb gene products. Rhamnose was not detected in the cell wall preparation purified from the mutant in which each of the three cloned genes was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with the autoclaved extracts from these mutants. These results indicate that the gene products identified in the present study are involved in the dTDP-L-rhamnose synthesis pathway and that the pathway relates to the biosynthesis of the serotype-specific polysaccharide antigen of S. mutans. Southern hybridization analysis revealed that genes homologous to the cloned genes involved in the dTDP-L-rhamnose synthesis pathway were widely distributed in a variety of streptococci. This is the first report of the biological function of the dTDP-rhamnose pathway in streptococci.  相似文献   

20.
The serotype-specific capsular polysaccharide from two strains of Pasteurella haemolytica serotype A1 organisms was purified and characterized by chemical analysis and NMR spectroscopy. The polymer has the structure----3)-O-(2-acetamido-2-deoxy-4-O-acetyl-beta-D-mannopyranos yluronic acid)-(1----4)-O-(2-acetamido-2-deoxy-beta-D-mannopyranose)-(1----. The polysaccharide was immunogenic (able to evoke production of antibodies) for sheep but not for rabbits. Immuno electron-microscopy studies using the Protein A-gold technique showed the polysaccharide to be peripherally located on the bacterial surface. Reduction, oxidation and de-O-acetylation of the polymer did not appear to alter its immunological precipitability with specific antiserum, but all three treatments destroyed its ability to adhere to sheep erythrocytes at neutral pH. De-N-acetylation of the polymer destroyed both immunological precipitability and erythrocyte adherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号