首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

2.
Seedlings of Petunia x hybrida Orchid treated with the ethylene-releasing compound ethephon at 0.9, 1.7, and 3.5 mM evolved ethylene at a higher rate as the concentration of ethephon increased. Regardless of the concentration of ethephon applied, ethylene evolution peaked 6 to 8 h following application. Evidence that ethephon application decreased apical dominance included an increase in the number of new nodes on the main stem and a sustained increase in the length of new and existing lateral shoots compared to the control (no ethephon). Plants treated with 3.5 mM ethephon developed mild chlorosis, whereas a concentration of 1.7 mM ethephon decreased apical dominance without phytotoxic effects. The auxin/cytokinin ratio decreased in the apical shoot section as early as 1 h after ethephon treatment. In contrast, a decrease in the ratio in the subapical shoot section was not detected until 24 h after ethephon application. Reduction in auxin/cytokinin ratio was a result of a decrease in indole-3-acetic acid (IAA) and an increase of zeatin riboside (ZR), but not isopentenyladenosine (iPA). These results suggest that exposing Orchid petunia seedlings to ethylene via ethephon lowers the auxin/cytokinin ratio, thereby promoting the outgrowth of lateral shoots.  相似文献   

3.
Seedlings of Petunia x hybrida ‘Orchid’ treated with the ethylene-releasing compound ethephon at 0.9, 1.7, and 3.5 mM evolved ethylene at a higher rate as the concentration of ethephon increased. Regardless of the concentration of ethephon applied, ethylene evolution peaked 6 to 8 h following application. Evidence that ethephon application decreased apical dominance included an increase in the number of new nodes on the main stem and a sustained increase in the length of new and existing lateral shoots compared to the control (no ethephon). Plants treated with 3.5 mM ethephon developed mild chlorosis, whereas a concentration of 1.7 mM ethephon decreased apical dominance without phytotoxic effects. The auxin/cytokinin ratio decreased in the apical shoot section as early as 1 h after ethephon treatment. In contrast, a decrease in the ratio in the subapical shoot section was not detected until 24 h after ethephon application. Reduction in auxin/cytokinin ratio was a result of a decrease in indole-3-acetic acid (IAA) and an increase of zeatin riboside (ZR), but not isopentenyladenosine (iPA). These results suggest that exposing ‘Orchid’ petunia seedlings to ethylene via ethephon lowers the auxin/cytokinin ratio, thereby promoting the outgrowth of lateral shoots.  相似文献   

4.
The Antagonism of Auxin and Kinetin in Apical Dominance   总被引:4,自引:0,他引:4  
  相似文献   

5.
CLINE  M. G.; RILEY  L. 《Annals of botany》1984,53(6):897-900
The presentation time for shoot inversion release of apicaldominance in Pharbitis nil is between 1 and 1.5 d. Five to 6d of shoot inversion are required for persistent outgrowth ofthe highest lateral bud. Pharbitis nil, apical dominance, shoot inversion, lateral bud growth, presentation time  相似文献   

6.
7.
Prasad, T. K. and Cline, M. G. 1985. Gravistimulus direction,ethylene production and shoot elongation in the release of apicaldominance in Pharbitis nil.—. exp. Bot. 36: 1969–1975.Release of apical dominance can be induced in Pharbitis nilby the inversion of the upper shoot. This promotion of outgrowthof the highest lateral bud adjacent to the bend of the stemappears to be mediated by ethylene inhibition of growth of theinverted main shoot. In the present investigation the existenceof a direct correlation between ethylene evolution and the directionof gravistimulus is demonstrated as well as an inverse correlationbetween ethylene production by the inverted upper shoot andits elongation. An inverse correlation also exists between elongationof the inverted upper shoot and the outgrowth of the highestlateral bud if the lower portion of the shoot (below the bend)is oriented in an upright position. The latent period for shoot–inversioninduction of ethylene production is about 2 h. These resultssupport the hypothesis of indirect ethylene control of apicaldominance release by retardation of elongation of the invertedshoot. Key words: Shoot inversion, gravistimulus, ethylene, latent period, bud outgrowth, pharbitis nil  相似文献   

8.
Abstract The effect of purine (BA) and phenylurea (CPPU) cytokinins on apical dominance release in in vitro cultured Rosa hybrida L., cv. Madelon and Motrea was evaluated. Cv. Madelon shows stronger natural apical growth and fewer branches than cv. Motrea in vivo and in vitro. We examined the effects under three conditions, without the addition of the auxin IBA, in the presence of IBA, and in material pretreated with a pulse of IBA. Results were scored weekly for 4 weeks. BA and CPPU stimulated axillary bud break, and higher numbers of open buds were recorded in the presence of CPPU. When CPPU cytokinin was added to culture medium, physiologic features such as bud sprouting and shoot fresh and dry weight were enhanced. CPPU was also highly efficient for overcoming IBA inhibition of bud outgrowth. Different cultivar responses were observed. Received 27 April 1999; accepted 23 February 2000  相似文献   

9.
10.
Apical Dominance in Vicia faba   总被引:3,自引:0,他引:3  
Apical dominance phenomena have been studied in seedlings ofVicia faba particularly in relation to the movement about theplant of uracil-2-14C applied to the cotyledons. Decapitationjust below the second node releases the growth of the lowermostlateral bud and inhibition is completely reimposed by applicationof indole-3-acetic acid (IAA) to the cut surface. Uracil-2-14Capplied in solution to the cotyledons is distributed in thestems of all experimental seedlings with no consistent differencesdue to decapitation or IAA application. On the other hand, decapitationresults in a rapid increase in uracil-2-14C content in the lateralbuds which far exceeds their promoted growth. This uptake iscompletely suppressed by IAA application. A ring of tri-iodobenzoicacid (TIBA)-lanolin paste around the stem above the bud suppressesIAA action both in bud growth and on uracil-2-14C uptake, andalso on the movement of IAA-1-14C down the stem. TIBA-application to the base of the bud does not prevent IAAaction on bud growth, but also does not prevent the movementof IAA-1-14C (or a water soluble product of its metabolism)into the bud. Direct application of kinetin to the lateral bud of intact plantscauses a short-lived release of growth. Gibberellic acid producesa smaller and scarcely significant increase which is additiveto the kinetin effect. Neither has any effect on uracil-2-14Cmovement into the bud. The implications of these findings are discussed in relationto various existing theories of the mode of auxin action inapical dominance and it is concluded that their strongest supportis for a mechanism involving the suppression of phloem differentiationin the vascular supply to the bud.  相似文献   

11.
TUCKER  D. J. 《Annals of botany》1977,41(1):181-190
The rogue tomato exhibits less apical dominance than the normalplant though the degree of correlative inhibition varies considerablybetween winter- and summer-sown plants. An examination of thelevel of endogenous hormones in both rogue and normal plantsat both times of year indicates that the degree of branchingis strongly associated with the levels of auxin in the tissue.It is suggested that this hormone has an effect on apical dominanceby virtue of its role in hormone-directed transport and by itseffect on the formation of abscisic acid in the region of thelateral buds. The results are discussed in relation to currenthypotheses of the mechanism of apical dominance.  相似文献   

12.
13.
14.
The development of lateral buds in isolated stems of Coleus blumei is inhibited by low concentrations of indoleacetic acid or other auxins, just as in other plants. The inhibition can be fully reversed by kinetin, about 3 times as much kinetin as IAA being needed. However, the outgrowth of the same lateral buds on intact Coleus plants is sensitive to environmental conditions, well-nourished plants in full daylight often showing little inhibition by applied auxin. It is shown that (a) the solvent used for IAA, (b) the light intensity and (c) the nitrogen and phosphorus nutrition, all control the sensitivity of the buds to auxin inhibition. Using water instead of lanolin, lowering the light intensity or decreasing the supply of either nitrogen or phosphorus all increase the degree of apical dominance.  相似文献   

15.
Although determinations of the ABA content of lateral buds ofPhaseolus vulgaris revealed no difference between decapitatedand intact control plants in the first 12 h following decapitation,a relative decrease in the ABA content of lateral buds of decapitatedplants was detectable 24 h following decapitation. Shoot decapitationwas also observed to result in a decrease in the ABA contentof stem tissue. The application of IAA to the stem of decapitatedplants prevented these changes and increased the ABA contentof stem tissue relative to that of intact plants. The levelsof IAA and ABA were also determined in the stem tissue fromthe nodes of intact bean plants. The possible interdependenceof these two plant hormones was further investigated by a studyof [2–14ClABA metabolism. The results are discussed inrelation to the possible role of these hormones in apical dominance. Key words: Apical dominance, Abscisic acid, Indole-3-acetic acid  相似文献   

16.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

17.
Lateral buds of the fern Davallia trichomanoides are releasedfrom inhibition by the removal of the main shoot apex. However,auxin is not capable of substituting for the apex in decapitatedshoots nor can auxin in shoot tips be detected by bioassay orextraction and chromatography. Expanding leaves of this speciescontain auxin, but these organs are not responsible for inhibitionof lateral bud growth. The response of lateral buds to an exogenouslyapplied cytokinin does not result in initial bud break. It isconcluded that the hormonal factors known to govern apical dominancein seed plants are not responsible for the regulation of differentialbud expansion in this fern.  相似文献   

18.
Five acylated peonidin glycosides were isolated from the pale gray-purple flowers of a duskish mutant in the Japanese morning glory (Ipomoea nil or Pharbitis nil) as major pigments, along with a known anthocyanin, Heavenly Blue Anthocyanin (HBA). Three of these were based on peonidin 3-sophoroside and two on peonidin 3-sophoroside-5-glucoside as their deacylanthocyanins; both deacylanthocyanins were acylated with caffeic acid and/or glucosylcaffeic acids. By spectroscopic and chemical methods, the structures of the former three pigments were determined to be 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside], 3-O-[2-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-glucopyranoside], and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] of peonidin. The structures of the latter two pigments were also confirmed as 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside, and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside of peonidin. The mutation affecting glycosylation and acylation in anthocyanin biosynthesis of Japanese morning glory was discussed.  相似文献   

19.
用人工合成细胞分裂素BAP和CPPU处理豌豆植株叶腋可诱导处理部位侧芽的生长,同时伴有大量乙烯产生;用乙烯合成抑制剂AVG处理或植株去顶同样可导致创芽生长,但乙烯释放量却明显少于对照,表明侧芽的生长与乙烯释放量的多少无关。而3种物质处理后诱导产生的侧芽的数目、长度及其鲜重与处理部位内源IAA含量的增加则呈正相关。  相似文献   

20.
Phototropin 1 (phot1) is a blue-light Ser/Thr receptor kinase that contains two LOV domains. It is a plasma membrane-associated protein that mediates phototropism, blue-light induced chloroplast movement, and stomatal opening. The aim of the present work was to analyze the intracellular localization of phot1 protein in Ipomoea nil seedlings. In cotyledon and hypocotyl cells of etiolated seedlings, phot1 was specifically localized in the plasma membrane regions, whereas in light-treated seedlings, it was homogeneously distributed throughout the whole cytoplasm, excluding cell nuclei and vacuoles. Phot1 was also localized in cotyledon epidermal and guard cells. Such a localization pattern suggests a light-dependent intracellular distribution of phot1 in Ipomoea nil. On the basis of the spatial distribution, the possible role of phot1 is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号