首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

2.
FINE STRUCTURE OF SMOOTH MUSCLE CELLS GROWN IN TISSUE CULTURE   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of smooth muscle cells of the embryo chicken gizzard cultured in monolayer was studied by phase-contrast optics and electron microscopy. The smooth muscle cells were irregular in shape, but tended to be elongate. The nucleus usually contained prominent nucleoli and was large in relation to the cell body. When fixed with glutaraldehyde, three different types of filaments were noted in the cytoplasm: thick (150–250 A in diameter) and thin (30–80 A in diameter) myofilaments, many of which were arranged in small bundles throughout the cytoplasm and which were usually associated with dark bodies; and filaments with a diameter of 80–110 A which were randomly orientated and are not regarded as myofilaments. Some of the aggregated ribosomes were helically arranged. Mitochondria, Golgi apparatus, and dilated rough endoplasmic reticulum were prominent. In contrast to in vivo muscle cells, micropinocytotic vesicles along the cell membrane were rare and dense areas were usually confined to cell membrane infoldings. These cells are compared to in vivo embryonic smooth muscle and adult muscle after treatment with estrogen. Monolayers of cultured smooth muscle will be of particular value in relating ultrastructural features to functional observations on the same cells.  相似文献   

3.
A fine structural study of the ventricular muscle of Venus mercenaria has revealed that it is an invertebrate smooth muscle. In the relaxed state induced by acetylcholine, both thick (350 Å) and thin (80 Å) myofilaments are observed. These are loosely distributed in bundles in the periphery of the mononucleated myocytes. The central core of the cell contains an ovoid nucleus, α-glycogen rosettes, round mitochondria and numerous smooth surfaced vesicles of the endoplasmic reticulum. After exposure to serotonin, all myofilaments are compacted in the peripheral cytoplasm and become oriented parallel to the longitudinal cellular axis. This produces contraction bands visible in phase contrast microscopy. Because these myofilaments attach to the cell membrane at sites of attachment plaques, contraction of the cell results in the serial evagination or blebbing of the cell surface. The above features are clearly demonstrable in this invertebrate smooth muscle and strongly suggest a sliding filament model as the contractile mechanism in this tissue. Moreover, the cell surface is thought to play an active and major role in that process.  相似文献   

4.
5.
Pharyngeal muscle of the planarian Dugesia tigrina was studied by electron microscopy after osmium tetroxide fixation. The muscle cell was observed to contain one myofibril or bundle of myofilaments parallel to its longitudinal axis. The myofilaments were of two types, different in size and distribution. No Z lines or myofilament organization into cross or helical striations were seen. Dense bodies were seen as projections from an invagination of the plasma membrane and as dense lines parallel to the myofilaments. The muscle cells are surrounded by a plasma membrane which is structurally associated with dense body projections, with vesicles and cisternae of sarcoplasmic reticulum, and with synaptic nerve endings. The cell has sarcoplasmic projections perpendicular to its long axis; these projections are seen to contain the nucleus or mitochondria and granules. Mitochondria and granules are also seen in a sarcoplasm rim around the fibril. The dense bodies may serve as attachment for thin myofilaments and function in transmission of stimuli from plasma membrane to the interior of the fibril.  相似文献   

6.
Heteromorphism of the contractile elements of the iris muscular tissue in chick embryos and in chickens has been studied by means of electron microscopical investigation. The leading contractile tissue of the iris is the striated muscular tissue, which is formed as a cellular-simplastic system with its own cambium-myosatellitocytes. Some cells, containing myofilaments in their cytoplasm, are related to myofibroblastic and smooth muscle differons, which functions remain to be studied. A hypothesis is proposed on existence of two sources for development of the iris muscular elements. The first-stem cells for the striated muscular tissue; at early stages of embryonal development they are included into composition of ectomesenchyme of the neural crest and migrate into the area of the muscle anlages. The second-cells migrating from the ocular cup margins and developing into the smooth myocytes of the iris.  相似文献   

7.
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction.  相似文献   

8.
Four muscular systems of the Tetraclita squamosa barnacle were observed by means of an electron microscope and it was revealed that these systems each bore different types of muscle cells. The four systems were the adductor (A), the lateral scutal depressor (LSD), the ventral scutal depressor (VSD), and the tergal depressor (TD). The A-system included cross stiated muscle cells which showed long sarcomeres (about 10 μm) and rather disordered arrays of myofilaments. The LSD-system included cross striated muscles which had medium length sarcomeres (about 6.7 μm) and rather ordered myofilamental arrays. The VSD-system was constructed of cross striated muscle cells which bore shorter sarcomeres (4.6 μm) than the previous three systems and ordered myofilamental arrays. This last type of cell also bore well-developed sarcoplasmic reticular systems. The TD-system included smooth muscle cells which showed rather ordered arrays of myofilaments and dense-bodies. Each muscular system, as described above, included to its advantage one type of cross striated or smooth muscle cell for its characteristic contraction. The relations between ultrastructures and functions of each muscular system will now be discussed.  相似文献   

9.
The muscle cells that cause constriction of the starfish larval esophagus (esophageal muscle cells) are one of the first cell types to express their differentiated morphological characteristics during development. Ultrastructurally these muscle cells resemble vertebrate and invertebrate smooth muscles. They contain a nucleus, a Golgi apparatus, contractile myofilaments, hemidesmosome-like structures, and what appears to be a simple sarcoplasmic reticulum. In asteroid embryos, this muscle layer originates during mouth formation when mesenchyme cells migrate from the tips of the coeloms to the esophagus. Once there, they elongate, forming processes. Over the next few days, the processes become filled with arrays of longitudinally arranged thick and thin myofilaments and thin sacs of smooth endoplasmic reticulum. The latter appear between the bundles of contractile filaments and the cell membranes. Contractile activity begins at approximately this time. The cisternae may represent a sarcoplasmic reticulum that is required for contraction. The majority of the esophageal muscle cell processes extend around the circumference of the developing esophagus, but occasional cells may be oriented in other directions. The latter cells are always farther away from the basal lamina and probably have little or no contact with it. Contact with basal lamina may serve to direct the migration of the cells and the orientation of the processes. J. Morphol. 237:1–18, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
The fine structure of the main dorsal and ventral circulatory trunks and of the subneural vessels and capillaries of the ventral nerve cord of the earthworm, Eisenia foetida, has been studied with the electron microscope. All of these vessels are lined internally by a continuous extracellular basement membrane varying in thickness (0.03 to 1 µ) with the vessel involved. The dorsal, ventral, and subneural vessels display inside this membrane scattered flattened macrophagic or leucocytic cells called amebocytes. These lie against the inner lining of the basement membrane, covering only a small fraction of its surface. They have long, attenuated branching cell processes. All of these vessels are lined with a continuous layer of unfenestrated endothelial cells displaying myofilaments and hence qualifying for the designation of "myoendothelial cells." The degree of muscular specialization varies over a spectrum, however, ranging from a delicate endowment of thin myofilaments in the capillary myoendothelial cells to highly specialized myoendothelial cells in the main pulsating dorsal blood trunk, which serves as the worm's "heart" or propulsive "aorta." The myoendothelial cells most specialized for contraction display well organized sarcoplasmic reticulum and myofibrils with thick and thin myofilaments resembling those of the earthworm body wall musculature. In the ventral circulatory trunk, circular and longitudinal myofilaments are found in each myoendothelial cell. In the dorsal trunk, the lining myoendothelial cells contain longitudinal myofilaments. Outside these cells are circular muscle cells. The lateral parts of the dorsal vessels have an additional outer longitudinal muscle layer. The blood plasma inside all of the vessels shows scattered particles representing the circulating earthworm blood pigment, erythrocruorin.  相似文献   

11.
The fine structure of fast and slow crustacean muscles   总被引:7,自引:6,他引:1       下载免费PDF全文
Known phasic and tonic muscle fibers of the crab Cancer magister were studied by electron microscopy. Phasic fibers have sarcomeres about 4.5 µ long, small polygonal myofibrils, and a well-developed sarcoplasmic reticulum. The thick myofilaments, disposed in hexagonal array, are each surrounded by six thin filaments. The tonic fibers have a sarcomere length of about 12 µ, larger myofibrils, a poorly developed sarcoplasmic reticulum, and a disorderly array of myofilaments. Each thick myofilament is surrounded by 10–12 thin filaments. The same morphological type of slow muscle has been found in the crustaceans, Macrocyclops albidus, Cypridopsis vidua, and Balanus cariosus, in each case in an anatomical location consistent with tonic action. A search of the literature indicates that this type of muscle is found in all classes of arthropods and is confined to visceral and postural muscles or specializations of these.  相似文献   

12.
Summary The cytochemistry and ultrastructure of intracytoplasmic filaments of pulmonary lymphatic endothelial cells of neonatal rabbits were studied by comparison with myofilaments of the peribronchial and pulmonary vascular smooth muscle cells. Two types of endothelial filaments were observed: thin filaments (diameter: 50 Å) which lie close to the abluminal cell membrane; and thick filaments (diameter: 90 Å) which are dispersed throughout the cell cytoplasm.Following heavy meromyosin (HMM) treatment, characteristic arrowhead complexes formed in the thin lymphatic endothelial filaments as well as in the actin filaments of the smooth muscle cells. There was no detectable reaction of HMM with the thick filaments.After incubation with EDTA, the thin filaments were labile, and the thick filaments became the major filamentous component in the endothelial cells. In smooth muscle cells, the actin myofilaments were also labile while the 100 Å filaments were stable.These observations support the hypothesis that the actin-like thin endothelial lymphatic filaments form part of a contractile system, while the thick filaments constitute a plastic cell skeleton. The significance of the contractile system in lymphatic endothelial cells might lie in a mechanism for the active regulation of the endothelial intercellular junctions and gaps and hence the permeability of the lymphatic endothelial cell lining.This study was supported by The Council for Tobacco Research—U.S.A. The authors thank Professor Robert C. Rosan, M.D. (Saint-Louis University—U.S.A.) for expert advice. R. Renwart, B. Emanuel and R. Jullet for technical, G. Pison and St. Ons for photographical and N. Tyberghien for secretarial assistance.  相似文献   

13.
Matsuno A  Hirota S 《Tissue & cell》1989,21(6):863-874
Four muscular systems of the Tetraclita squamosa barnacle were observed by means of an electron microscope and it was revealed that these systems each bore different types of muscle cells. The four systems were the adductor (A), the lateral scutal depressor (LSD), the ventral scutal depressor (VSD), and the tergal depressor (TD). The A-system included cross stiated muscle cells which showed long sarcomeres (about 10 mum) and rather disordered arrays of myofilaments. The LSD-system included cross striated muscles which had medium length sarcomeres (about 6.7 mum) and rather ordered myofilamental arrays. The VSD-system was constructed of cross striated muscle cells which bore shorter sarcomeres (4.6 mum) than the previous three systems and ordered myofilamental arrays. This last type of cell also bore well-developed sarcoplasmic reticular systems. The TD-system included smooth muscle cells which showed rather ordered arrays of myofilaments and dense-bodies. Each muscular system, as described above, included to its advantage one type of cross striated or smooth muscle cell for its characteristic contraction. The relations between ultrastructures and functions of each muscular system will now be discussed.  相似文献   

14.
M. Cristina Faccioni-Heuser, Denise M. Zancan, Christiane Q. Lopes and Matilde Achaval. 1999. The pedal muscle of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata): an ultrastructure approach. — Acta Zoologica (Stockholm) 80: 325–337
The ultrastructure of the pedal muscle of the Megalobulimus oblongus is described. This muscle consists of transverse, longitudinal and oblique bundles ensheathed in collagenous tissue. Each muscle cell is also ensheathed by collagen. The smooth muscle cells contain thin and thick filaments; the thin filaments are attached to dense bodies. These cells contain a simple system of sarcoplasmic reticulum, subsarcolemmal caveolae and mitochondria with dense granules in the matrix, and glycogen. Three types of muscle cells were identified. Type A cells exhibited densely packed myofilaments, abundant glycogen rosettes, numerous mitochondria and sarcoplasmic reticulum profiles. Type B cells exhibited scanty glycogen and mitochondria, few cisternae of sarcoplasmic reticulum and large intermyofibrillar spaces. Type C cells exhibited intermediate characteristics between type A and type B cells. Neither nexus nor desmosomes were observed between the muscle cell membranes. The muscle contains well developed connective tissue and blood vessels. These structures and the distribution of muscle cells are probably involved in the muscular-hydrostat system. The muscle is richly innervated, having neuromuscular junctions with clear and electron-dense synaptic vesicles. The clear vesicles probably contain acetylcholine because the axons to which they are connected arise from acetylcholinesterase positive neurones of the pedal ganglion. The other vesicles may secrete monoamines such as serotonin and/or neuropeptides such as substance P.  相似文献   

15.
Basalar and tibial extensor muscle fibers of Achalarus lyciades were examined with light and electron microscopes. Basalar muscle fibers are 100–150 µ in diameter. T-system membranes and sarcoplasmic reticulum make triadic contacts midway between Z lines and the middle of each sarcomere. The sarcoplasmic reticulum is characterized by a transverse element situated among myofilaments halfway between Z lines in every sarcomere. The morphology of Z lines, hexagonal packing of thin and thick myofilaments, and thin/thick myofilament ratios are similar to those of fast-acting insect muscles. Tibial extensor muscle fibers are 50–100 µ in diameter. Except for a lack of the transverse element, the T system and sarcoplasmic reticulum are similar to those of basalar muscle. Wavy Z lines, lack of a hexagonal packing of myofilaments, and larger thin/thick myofilament ratios are similar to those of other postural muscles of insects. The morphology of basalar and tibial extensor muscle is compared to that of other insect muscle with known functions, and reference is made to the possible contribution of the transverse element of sarcoplasmic reticulum in basalar flight muscle to speed and synchrony in this muscle.  相似文献   

16.
采用显微及亚显微技术观察了可1:7革囊星虫肾管肌组织的结构特征。肾管肌组织位于柱状上皮层下,由纵肌及环肌组成。肌细胞(肌纤维)呈长梭形,核位于细胞边缘并明显突向细胞外基质中,核周围有较多线粒体及少量内质网。肌纤维表面有许多囊状或指状突起的肌质囊,内含肌浆、光面内质网、线粒体及糖原颗粒。肌质囊之间的肌膜内面具膜相关电子致密斑。肌纤维内含粗、细两种肌丝,细肌丝围绕在粗肌丝周围,在肌丝之间分布有糖原颗粒、线粒体及胞质致密体。线粒体及糖原为肌纤维的代谢提供能量,肌组织的收缩对促进肾管的过滤排泄及繁殖时配子进入肾管可能起重要作用。  相似文献   

17.
The ultrastructure of the mouse esophagus at the level of the diaphragm was studied from embryo day 17 to adult. The transdifferentiation of smooth muscle into skeletal muscle was categorized into seven ultrastructural stages: during phase I normal smooth muscle myogenesis was observed. In phase II subpopulations of cells changed into aggregates of myoblast-like cells. At the center of these cell aggregates, phase III cells appeared that contained condensed myofilaments. Dense bodies and dense bands appeared enlarged by the accumulation of thin filaments. In phase IV the condensed myofilaments organized into sarcomere pretemplate structures. The dense bodies and dense bands formed rudimentary Z-lines. In phase V the sarcomere templates appeared as more defined structures and began to align. An elaborate perinuclear region appeared. During phase VI, skeletal muscle sarcomeres were apparent and myofilaments were arranged in a typical hexagonal array. Phase VII skeletal muscle fibers were unique with sarcomeric bifurcations and anastomoses between adjacent myofibrils. Non-contractile organelles were less organized in these cells than in skeletal muscles such as rectus and vastus lateralis muscles. During the transdifferentiation process, other cell types remained unchanged, except the number of interstitial cells of Cajal became reduced. Immunocytochemical studies with antibodies against smooth and skeletal muscle myosin were also performed during the process of transdifferentiation. An osmium tetroxide/potassium ferricyanide en bloc mordant enabled the use of ultrathin Unicryl sections for immunocytochemistry. Cells exhibited smooth muscle myosin-like immunoreactivity from the smooth muscle stage through the condensed myofilament stage. Cells were immunopositive for skeletal muscle myosin before the formation of sarcomere templates, during the condensed stage, and after development of mature skeletal muscle cells. We also observed a hybrid muscle cell with properties of both smooth and skeletal muscle cells.  相似文献   

18.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

19.
The formation of neointimal thickenings in the rat carotid artery after balloon injury was studied by a combination of electron-microscopic and stereological methods. All smooth muscle cells in the normal media had a contractile phenotype, the cytoplasm being dominated by myofilaments. Seven days after endothelial denudation, the smooth muscle cells in the innermost part of the media had assumed a synthetic phenotype by loss of myofilaments and formation of a large endoplasmic reticulum and Golgi complex. These cells moved through fine openings in the internal elastic lamina and gave rise to a growing neointima by proliferation and secretion of extracellular matrix components. Fourteen days after the operation, the neointima had almost reached its final size, and mitoses were no longer noted. Nevertheless, the cells maintained a synthetic phenotype with prominent secretory organelles, although myofilaments had started to become more abundant again. They were surrounded by an extracellular matrix made up of collagen fibrils and coalescing patches of elastin. Thirty-five days after the operation, an endothelial cell layer had reformed and covered most of the luminal vessel surface. In parallel, the smooth muscle cells in the neointima had returned to a contractile phenotype with a cytoplasm dominated by myofilaments. These findings provide a morphological basis for further analysis of the cellular and molecular interactions involved in the formation of neointimal thickenings after endothelial injury, and for the search for agents interfering with this process.  相似文献   

20.
During the early stages of atherogenesis, as well as during in vitro cultivation, smooth muscle cells modulate from a contractile to a synthetic phenotype. This process includes the loss of myofilaments and the formation of an extensive rough endoplasmic reticulum and a large Golgi complex; it leads to decreased contractility and the commencement of cell growth and secretion of extracellular matrix components. In this paper, the effects of nicotine on adult rat arterial smooth muscle cells cultivated in vitro were studied by transmission electron microscopy and 3H-thymidine autoradiography. The results show that the drug speeded the initial rate of transition of the cells from contractile to synthetic phenotype in primary culture. Further, it stimulated the initiation of DNA synthesis in growth-arrested secondary cultures. Its effect was independent of other mitogens and additive to that of serum. The influences of nicotine, both on the modulation of the smooth muscle phenotype and the initiation of DNA synthesis, occurred at concentrations lower than those obtained in the blood after smoking and could contribute to the role of smoking as a risk factor for atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号