首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the use of recombinant scorpion toxin in the form of fusion protein as antigen for mice immunisation. The aim is to produce protective antisera against lethal activity of the venom from Tunisian scorpion Buthus occitanus tunetanus, responsible for several annually reported human cases of scorpion stings. The gene encoding Bot III (the most toxic alpha toxin of Buthus occitanus tunetanus) was fused to the sequence encoding synthetic ZZ domains of staphylococcal protein A. The construct ZZ-Bot III was expressed in the periplasm of E. coli as a fusion protein and purified by affinity chromatography. The recombinant fusion protein was characterized and used as antigen to generate antibodies in mice. The antibodies against the recombinant protein neutralize the toxic venom (10 LD50/ml) and also confer protection for immunized mice against antigenically related mammal toxins.  相似文献   

2.
Examination of 76 homologous neurotoxin sequences suggested that the "toxic" domain of these compounds consists of twelve highly conserved residues. Five of these, namely Lys-27, Trp-29, Asp-31, Arg-33 and Glu-38, together with a variant residue at position 36 are organized into a pattern which resembles that of d-tubocurarine. Two lines of experimental evidence are in agreement with the proposed topology of the "toxic" site in Naja nigricollis toxin alpha--Three highly conserved residues (Lys-27, Trp-29 and Lys-47) have been modified individually in toxin alpha. These modifications induce a decrease in binding affinity of toxin alpha for its target, the nicotinic acetylcholine receptor. In contrast, modifications of three residues (Leu-1, Lys-15 and Lys-51) excluded from the "toxic" domain, do not alter the binding properties of toxin alpha.--Five toxin derivatives carrying a nitroxide group at residues 1, 15, 27, 47 or 51 have been prepared. ESR spectra have been recorded for each derivative in both the free state and bound to the receptor. Mobility of the probes of the residues excluded from the "toxic" site is not altered upon receptor binding. In contrast mobility of the nitroxide of the presumed "toxic" Lys-47 becomes markedly reduced after toxin receptor complex formation. Lys-27 nitroxide is immobilized in both the free and bound state. The antigenic structure of N. nigricollis toxin alpha has been partially clarified using two different approaches. --Fifteen antigenically important residues of toxin alpha have been identified by analyzing cross-reactions between toxin alpha and eleven homologous neurotoxins, using polyclonal antibodies.--- One monoclonal antibody (M alpha 1) specific for toxin alpha has been prepared. Competition experiments, made with (3H) toxin alpha, six mono modified toxin derivatives or alpha three homologous neurotoxins, showed that the binding site of (M alpha 1) comprises the N-terminal group, Lys-15, Pro-18 and probably Thr-16. This site is topographically different from the "toxic" domain. (M alpha 1) inhibits the toxicity of toxin alpha under both in vivo and in vitro conditions. In addition, (M alpha 1) is capable of "removing" toxin molecules bound to the receptor, allowing a rapid recovery of the functional properties of the receptor.  相似文献   

3.
Monoclonal antibody to type F Clostridium botulinum toxin   总被引:1,自引:0,他引:1  
Hybridomas synthesizing monoclonal antibodies (MAbs) against type F Clostridium botulinum toxin were developed. MAb from one stable hybridoma, hybridoma 223, consisted of kappa light chains and an immunoglobulin G subclass 2a heavy chain. This MAb was used in a double-sandwich enzyme-linked immunosorbent assay to detect type F toxin in foods, culture fluids, and purified toxin preparations. The sensitivity of the double-sandwich enzyme-linked immunosorbent assay was approximately 10 mouse lethal doses of toxin per ml of toxic fluid.  相似文献   

4.
Serotherapy, an approach currently used to protect humans against animal bites or stings, is often too specific. To broaden antiserum paraspecificity, use of antibodies directed against areas shared by all members of a toxin family was previously proposed. MST2 is a mAb that recognizes all long-chain curaremimetic toxins (Charpentier et al. (1990) J. Mol. Recog. 3, 74-81). It binds to toxin residues that make contact with the toxin's target, e.g., the nicotinic acetylcholine receptor (AcChoR). We now show that MST2 also recognizes (-) nicotine, an agonist of AcChoR. Binding properties of MST2 therefore mimick, at least partially, binding properties of AcChoR. Injection in rabbits of MST2 mixed with adjuvant, elicited anti-idiotypic (anti-Id) antibodies that inhibited binding of the toxin to AcChoR. A proportion of these anti-Id antibodies specifically bound AcChoR and thereby mimicked the toxin. Furthermore, rabbits immunized with MST2 elicited auto-anti-anti-Id antibodies capable of binding the toxin. Our data provide a molecular explanation for the previously reported signs of myasthenia gravis as triggered by antibodies raised against cholinergic antagonists. Implications in the design of antisera to toxic proteins are discussed.  相似文献   

5.
The objective of this study was to identify and characterize a "biomarker of toxicity" from the proteome of Alexandrium tamarense, a paralytic shellfish toxin (PST)-producing dinoflagellate. A combination of 2-DE and MS approaches was employed to identify proteins of interest in the vegetative cells of several strains of A. tamarense with different toxin compositions and from different geographical locations. The electrophoretic analysis of the total water-soluble proteins from these toxic strains by 2-DE showed that several abundant proteins, namely AT-T1, AT-T2 and AT-T3, differing slightly in apparent Mr and pIs, were consistently present in all toxic strains of A. tamarense. Further analysis by MALDI-TOF MS and N-terminal amino acid sequencing revealed that they are isoforms of the same protein. Even more intriguing is that these proteins in A. tamarense have similar amino acid sequences and are closely related to a "biomarker of toxicity" previously reported in A. minutum. Unambiguous and highly species-specific identification was later achieved by comparing the PMFs of proteins in these two species. An initial attempt to characterize these proteins by generation of murine polyclonal antibodies against the AT-T1 protein was successful. Western blot analysis using the murine AT-T1-polycolonal antibodies identified all the toxic strains of A. tamarense and A. minutum, but not the nontoxic strain of A. tamarense. These results indicate that these protein characteristics for toxic strains are species-specific and that they are stable properties of the tested algae which are clearly distinguishable irrespective of geographical location and toxin composition. To our knowledge, this is the first study to demonstrate the use of polyclonal antibodies against marker proteins purified from 2-DE gels to distinguish different strains and species of the PST-producing dinoflagellate Alexandrium. It provides the basis for the production of monoclonal antibody probes against the "biomarkers of toxicity" for those dinoflagellates whose genome is incompletely characterized. Potentially, immunoassays could be developed to detect the presence of toxic algae in routine monitoring programs as well as to predict bloom development and movement.  相似文献   

6.
Mouse monoclonal antibodies against the most acutely toxic substances, botulinum neurotoxins (BoNTs) of types A, B, E, and F, was generated and characterized, that recognize their respective toxins in natural toxin complex. Based on these antibodies, we developed sandwich-ELISA for quantitative detection of these toxins. For each respective toxin the detection limit of the assay was: BoNT/A - 0.4 ng/ml, BoNT/B - 0.5 ng/ml; BoNT/E - 0.1 ng/ml; and for BoNT/F - 2.4 ng/ml. The developed assays permitted quantitative identification of the BoNTs in canned meat and vegetables. The BNTA-4.1 and BNTA-9.1 antibodies possessed neutralizing activity against natural complex of the botulinium toxin type A in vivo, both individually and in mixture, the mixture of the antibodies neutralized the higher dose of the toxin. The BNTA-4.1 antibody binds specifically the light chain (the chain with protease activity) of the toxin, whereas BNTA-9.1 interacts with the heavy chain. We believe that the BNTA-4.1 and BNTA-9.1 monoclonal antibodies are prospective candidates for development of humanized therapeutic antibodies for treatment of BoNT/A-caused botulism.  相似文献   

7.
王健  任改新 《微生物学报》1990,30(5):369-374
Bacillus sphaericus Ts-1 Mosquito larvicidal toxins 42 k Da and 43 k Da were isolated by Sephadex G-200 chromatography. Three strains of highly toxic B. sphaericus and two non toxic strains were screened for toxic proteins using ELISA. The lowest detectable toxin level was 1.56 X 10(-5) mg/ml. Non toxic strains did not produce antigens reacting to either the 42 kDa or the 43 kDa antibodies. Ts-1 cultures were examined at 12 and 24 h by LC50 bioassay against Culex pipiens. The LC50's at 12 h and 24 h were 0.71 ppm and 0.154 ppm, respectively, i.e., the toxin level at 24 h was 4.6 times the level at 12 h. ELISA tests established total toxin at 0.049 mg/ml and 0.225 mg/ml at 12 h and 24 h, respectively, confirming the LC50 study.  相似文献   

8.
One homogeneous population of high-affinity monoclonal antibodies (KD = 0.35 nM) specific for Naja nigricollis toxin alpha has been produced. It neutralizes the biological activity of the toxin under both the vivo and in vitro conditions. The molecular zone of the toxin to which the antibody binds has been precisely defined on the basis of cross-reaction experiments using five derivative of toxin alpha monomodified at a single amino group and two naturally occurring homologous toxins. The epitope is located at the base of the first beta-sheet loop of the toxin, involving the two positive charges at the N-terminal position and lysine-15 proline-18, and probably threonine-16. It is shown that this region is topographically distinct from the "toxic" site of toxin alpha. Several possibilities are offered to explain the mechanisms(s) of specific neutralization.  相似文献   

9.
《MABS-AUSTIN》2013,5(2):446-459
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

10.
Botulinum toxins (BoNTs) are among the most toxic substances on earth, with serotype A toxin being the most toxic substance known. They are responsible for human botulism, a disease characterized by flaccid muscle paralysis that occurs naturally through food poisoning or the colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNT has been classified as a category A agent by the Centers for Disease Control, and it is one of six agents with the highest potential risk of use as bioweapons. Human or human-like neutralizing antibodies are thus required for the development of anti-botulinum toxin drugs to deal with this possibility. In this study, Macaca fascicularis was hyperimmunized with a recombinant light chain of BoNT/A. An immune phage display library was constructed and, after multistep panning, several scFv with nanomolar affinities that inhibited the endopeptidase activity of BoNT/A1 in vitro as scFv-Fc, with a molar ratio (ab binding site:toxin) of up to 1:1, were isolated. The neutralization of BoNT/A-induced paralysis by the SEM120-IID5, SEM120-IIIC1 and SEM120-IIIC4 antibodies was demonstrated in mouse phrenic nerve-hemidiaphragm preparations with the holotoxin. The neutralization observed is the strongest ever measured in the phrenic nerve-hemidiaphragm assay for BoNT/A1 for a monoclonal antibody. Several scFv-Fc inhibiting the endopeptidase activity of botulinum neurotoxin A were isolated. For SEM120-IID5, SEM120-IIIC1, and SEM120-IIIC4, inhibitory effects in vitro and protection against the toxin ex vivo were observed. The human-like nature of these antibodies makes them promising lead candidates for further development of immunotherapeutics for this disease.  相似文献   

11.
The ability of staphylococcal strains isolated from different anatomical sites in 133 healthy goats to produce toxic shock syndrome toxin 1 (TSST-1) and the presence of antibodies to this toxin in serum and milk were studied. The enzyme-linked immunosorbent assay method was used to detect both the toxin and the presence of antibodies. Of a total of 342 staphylococcal strains studied, 86 (25.2%) were found to produce TSST-1. Specific antibodies to TSST-1 were found in the serum of 57 (42.9%) of the animals studied and the milk of 63 (47.4%) of the animals. These results suggest that goats are frequently in contact with staphylococci that produce TSST-1, a toxin usually associated with Staphylococcus aureus strains isolated from cases of toxic shock syndrome in humans.  相似文献   

12.
The effects of 1,2-cyclohexanedione and phenylglyoxal on staphylococcal alpha-toxin were studied. Modification of one arginine residue in alpha-toxin was sufficient to render the toxin nonhemolytic with no conformational change. Modified alpha-toxin did not protect cells from hemolysis by native alpha-toxin. An arginine residue is therefore at or near the binding site of alpha-toxin. Trypsin digestion of modified alpha-toxin generated a 20 kDa fragment which was isolated using a boric acid gel column. Upon regeneration, this 20 kDa fragment was not recognized by a population of antibodies which prevented alpha-toxin binding. The fragment was recognized by antibodies directed against post-binding events. However, the antibinding antibodies recognized the intact modified toxin. This leads us to conclude that antibinding determinants are not found directly in the binding site or are conformationally masked.  相似文献   

13.
The ability of staphylococcal strains isolated from different anatomical sites in 133 healthy goats to produce toxic shock syndrome toxin 1 (TSST-1) and the presence of antibodies to this toxin in serum and milk were studied. The enzyme-linked immunosorbent assay method was used to detect both the toxin and the presence of antibodies. Of a total of 342 staphylococcal strains studied, 86 (25.2%) were found to produce TSST-1. Specific antibodies to TSST-1 were found in the serum of 57 (42.9%) of the animals studied and the milk of 63 (47.4%) of the animals. These results suggest that goats are frequently in contact with staphylococci that produce TSST-1, a toxin usually associated with Staphylococcus aureus strains isolated from cases of toxic shock syndrome in humans.  相似文献   

14.
Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 μg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development.  相似文献   

15.
Treatment of botulinic neurotoxin A with cyclohexanedione demonstrated that modification of 5 to 10 arginine residues does not change the neurotoxin toxicity, while after modification of 15-20 arginine residues the toxicity is decreased by 40-50% of the original value. Butanedione exerts a stronger detoxicating effect on neurotoxin than cyclohexanedione. The molecular conformation of the modified toxin derivatives and their precipitability upon interaction with antisera against toxin and toxin fragments does not change thereby. The non-toxic derivatives of toxin containing 40 modified arginine residues possess a partial serological affinity for the original toxin in a reaction with antiserum against toxin but do not interact with the antifragment sera. The molecular conformation of these preparations is changed considerably. It is assumed that one or two arginine residues are located near the toxic site of the neurotoxin molecule and are also components of its antigenic determinants. Modification of histidine residues in the neurotoxin molecule by diethylpyrocarbonate is accompanied by a decrease of its toxicity. An additional 10% toxicity is revealed upon modification of 11-13 histidine residues. The molecular conformation of the modified derivatives of neurotoxin and their precipitability do not change thereby. It is probable that 1 or 2 histidine residues are located at or near the toxic site. The data obtained suggest that histidine residues are not localized in antigenic determinants of the neurotoxin molecule.  相似文献   

16.
Summary We coupled monoclonal IgMk antibodies directed against human breast carcinoma cells to the A-chain of the plant toxin ricin. These molecular hybrids maintain both their antibody-binding activity and the toxic activity of the A-chain. Thus, they specifically bind to and kill the breast carcinoma cells in vitro.  相似文献   

17.
Entry of diphtheria toxin-protein A chimeras into cells   总被引:6,自引:0,他引:6  
Fusion proteins consisting of diphtheria toxin and a duplicated Fc-binding domain of protein A were made in vitro after amplification of the DNA template by the polymerase chain reaction. The fusion proteins bound avidly to Vero cells coated with antibodies. A fusion protein containing full-length diphtheria toxin was toxic at lower concentrations than diphtheria toxin alone, apparently due to more efficient binding. The enzymatic part of the fusion protein was translocated across the surface membrane upon exposure to low pH. Like authentic diphtheria toxin, the fusion protein formed cation selective channels at low pH. Excess amounts of unlabeled diphtheria toxin inhibited formation of pronase-protected fragments derived from radiolabeled fusion protein. Furthermore, conditions that down-regulate the diphtheria toxin receptors reduced the sensitivity of the cells to the fusion protein, supporting the notion that authentic diphtheria toxin receptors are required. At temperatures below 18 degrees C the toxicity of the fusion protein was strongly reduced, whereas there was no temperature block for authentic diphtheria toxin. Brefeldin A protected Vero cells against the fusion protein but not against diphtheria toxin. The results indicate that the diphtheria toxin receptor is required for efficient toxin translocation even under conditions where the toxin is bound by an alternate binding moiety, and they suggest that the intracellular routing of the fusion protein is different from that of diphtheria toxin.  相似文献   

18.
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74–123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin’s toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.  相似文献   

19.
It is known that administration of horse serum against diphtheria toxin can cause autoimmune and allergic complications. Therefore it is important for improvement of serotherapy to develop methods of prediction of disease course and quantity of diphtheria toxin and antitoxic antibodies in a serum. We have developed the mathematical model of diphtheria infection, which consists of six differential equations describing dynamics of diphtheria toxin and antitoxic antibodies in a serum, quantity of infection agent and macrophages in a site of inflammation. This mathematical model allows to predict the course of infectious process, the level of diphtheria toxin and antitoxic antibodies in the sera of people with diphtheria and to calculate the individual therapeutic dose of antitoxic serum for each patient.  相似文献   

20.
Wei W  Lu Q  Chaudry GJ  Leppla SH  Cohen SN 《Cell》2006,124(6):1141-1154
Toxins produced by Bacillus anthracis and other microbial pathogens require functions of host cell genes to yield toxic effects. Here we show that low density lipoprotein receptor-related protein 6 (LRP6), previously known to be a coreceptor for the Wnt signaling pathway, is required for anthrax toxin lethality in mammalian cells. Downregulation of LRP6 or coexpression of a truncated LRP6 dominant-negative peptide inhibited cellular uptake of complexes containing the protective antigen (PA) carrier of anthrax toxin moieties and protected targeted cells from death, as did antibodies against epitopes in the LRP6 extracellular domain. Fluorescence microscopy and biochemical analyses showed that LRP6 enables toxin internalization by interacting at the cell surface with PA receptors TEM8/ATR and/or CMG2 to form a multicomponent complex that enters cells upon PA binding. Our results, which reveal a previously unsuspected biological role for LRP6, identify LRP6 as a potential target for countermeasures against anthrax toxin lethality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号