首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

2.
Small nuclear ribonucleoprotein particles (snRNPs) of the U-snRNP class from Ehrlich ascites tumor cells were purified in a one-step procedure by affinity chromatography with antibodies specific for 2,2,7-trimethylguanosine (m23.2.7G), which is part of the 5'-terminal cap structure of snRNAs U1-U5. Antibody-bound snRNPs are desorbed from the affinity column by elution with excess nucleoside m23.2.7G; this guarantees maintenance of their native structure. The snRNPs U1, U2, U4, U5 and U6 can be recovered quantitatively from nuclear extracts by this procedure. Co-isolation of U6 snRNP must be due to interactions between this and other snRNPs, as anti-m23.2.7G antibodies do not react with deproteinized U6 snRNA. We have so far defined nine proteins of approximate mol. wts. 10 000, 12 000, 13 000, 16 000, 21 000, 28 000, 32 000, 34 000 and 75 000. Purified snRNPs react with anti-(U1)RNP and with anti-Sm antisera from patients with mixed connective tissue disease and from MRL/l mice. As determined by the protein blotting technique, six of the snRNP polypeptides, characterized by apparent mol. wts. 13 000, 16 000, 21 000, 28 000, 34 000 and 75 000, bear antigenic determinants for one or the other of the above autoantibody classes. This suggests strongly that the U-snRNPs produced by the procedure described here are indeed representative of the snRNPs in the cell. With highly purified snRNPs available, investigation of possible enzymic functions of the particles may now be undertaken.  相似文献   

3.
4.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

5.
G Winkelmann  M Bach    R Lührmann 《The EMBO journal》1989,8(10):3105-3112
We have established an in vitro complementation system that has allowed us to investigate the role of individual purified snRNPs in the splicing of pre-mRNA molecules. For the preparation of snRNP-depleted nuclear extracts we have first removed the majority of endogenous snRNPs from the nuclear extracts by one passage over an anti-m3G column and then degraded the remaining snRNPs with micrococcal nuclease. The mixture of snRNPs U1, U2, U4/U6 and U5, obtained by anti-m3G immuno-affinity chromatography, was functionally active and able to restore the splicing of snRNP-depleted nuclear extracts. Mono-Q chromatography was used for further fractionation of the snRNPs U1-U6. This produced three fractions that were highly enriched in snRNPs U1 and U2, U5 and U4/U6 respectively. Conditions were found where addition of the [U1, U2] and the U4/U6 snRNP fractions to the snRNP-depleted nuclear extracts gave rise to the formation of splice intermediates in the absence of any 3' cleavage/exon 1-exon 2 product formation. Only when purified 20S U5 snRNPs were added did both steps of the splicing reaction occur efficiently. Our data suggest that U5 snRNP is absolutely required for the second step of splicing and is needed further for efficient initiation of the splicing reaction. The requirement for U5 snRNPs for splicing was corroborated by glycerol gradient sedimentation analysis of the respective reconstituted pre-mRNP complexes. Stable and efficient formation of 50-60S spliceosomes was observed only in the presence of all snRNPs.  相似文献   

6.
Structural requirements for the function of a yeast chromosomal replicator   总被引:76,自引:0,他引:76  
S Kearsey 《Cell》1984,37(1):299-307
We have investigated the role of small nuclear ribonucleoprotein particles (snRNPs) in the in vitro splicing of messenger RNA precursors by a variety of procedures. Removal of the U-type snRNPs from the nuclear extracts of HeLa cells with protein A-Sepharose-coupled human autoimmune antibodies leads to complete loss of splicing activity. The inhibition of splicing can be prevented by saturating the coupled antibodies with purified nucleoplasmic U snRNPs prior to incubation with nuclear extract. We further demonstrate that an intact 5' terminus of U1 snRNA is required for the functioning of U1 snRNP in the splicing reaction. Antibodies directed against the trimethylated cap structure of the U snRNAs inhibit splicing. Upon removal of the first eight nucleotides of the U1 snRNA in the particles by site-directed hydrolysis with ribonuclease H in the presence of a synthetic complementary oligodeoxynucleotide splicing is completely abolished. These results are in strong support of current models suggesting that a base-pairing interaction between the 5' terminus of the U1 snRNA and the 5' splice site of a mRNA precursor is a prerequisite for proper splicing.  相似文献   

7.
8.
9.
We have established an in vitro reconstitution/splicing complementation system which has allowed the investigation of the role of mammalian U1 snRNP components both in splicing and at the early stages of spliceosome formation. U1 snRNPs reconstituted from purified, native snRNP proteins and either authentic or in vitro transcribed U1 snRNA restored both early (E) splicing complex formation and splicing-activity to U1-depleted extracts. In vitro reconstituted U1 snRNPs possessing an m3G or ApppG cap were equally active in splicing, demonstrating that a physiological cap structure is not absolutely required for U1 function. However, the presence of an m7GpppG or GpppG cap was deleterious to splicing, most likely due to competition for the m7G cap binding proteins. No significant reduction in splicing or E complex formation was detected with U1 snRNPs reconstituted from U1 snRNA lacking the RNA binding sites of the U1-70K or U1-A protein (i.e., stem-loop I and II, respectively). Complementation studies with purified HeLa U1 snRNPs lacking subsets of the U1-specific proteins demonstrated a role for the U1-C, but not U1-A, protein in the formation and/or stabilization of early splicing complexes. Studies with recombinant U1-C protein mutants indicated that the N-terminal domain of U1-C is necessary and sufficient for the stimulation of E complex formation.  相似文献   

10.
Functional analysis of mutant Xenopus U2 snRNAs   总被引:30,自引:0,他引:30  
J Hamm  N A Dathan  I W Mattaj 《Cell》1989,59(1):159-169
  相似文献   

11.
12.
U Utans  A Krmer 《The EMBO journal》1990,9(12):4119-4126
The splicing of nuclear messenger RNA precursors (pre-mRNA) can be reconstituted in vitro with factors partially purified from HeLa cell nuclear extracts. Splicing complexes are assembled in the presence of the small nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6 and the protein factors SF1, SF2, SF3 and U2AF. However, the complexes thus formed are inactive, i.e. they only contain unprocessed pre-mRNA. The intermediates and products of the splicing reaction are generated after addition of SF4. This splicing factor is a heat-labile protein which requires sulfhydryl groups for its activity. SF4 appears to participate, directly or indirectly, in the conversion of a functional but inactive splicing complex to the active spliceosome.  相似文献   

13.
We have purified the yeast U5 and U6 pre-mRNA splicing small nuclear ribonucleoproteins (snRNPs) by affinity chromatography and analyzed the associated polypeptides by mass spectrometry. The yeast U5 snRNP is composed of the two variants of U5 snRNA, six U5-specific proteins and the 7 proteins of the canonical Sm core. The U6 snRNP is composed of the U6 snRNA, Prp24, and the 7 Sm-Like (LSM) proteins. Surprisingly, the yeast DEAD-box helicase-like protein Prp28 is stably associated with the U5 snRNP, yet is absent from the purified U4/U6 x U5 snRNP. A novel yeast U5 and four novel yeast U4/U6 x U5 snRNP polypeptides were characterized by genetic and biochemical means to demonstrate their involvement in the pre-mRNA splicing reaction. We also show that, unlike the human tri-snRNP, the yeast tri-snRNP dissociated upon addition of ATP or dATP.  相似文献   

14.
During catalytic activation of the spliceosome, snRNP remodeling events occur, leading to the formation of a 35S U5 snRNP that contains a large group of proteins, including Prp19 and CDC5, not found in 20S U5 snRNPs. To investigate the function of 35S U5 proteins, we immunoaffinity purified human spliceosomes that had not yet undergone catalytic activation (designated BDeltaU1), which contained U2, U4, U5, and U6, but lacked U1 snRNA. Comparison of the protein compositions of BDeltaU1 and activated B* spliceosomes revealed that, whereas U4/U6 snRNP proteins are stably associated with BDeltaU1 spliceosomes, 35S U5-associated proteins (which are present in B*) are largely absent, suggesting that they are dispensable for complex B formation. Indeed, immunodepletion/complementation experiments demonstrated that a subset of 35S U5 proteins including Prp19, which form a stable heteromeric complex, are required prior to catalytic step 1 of splicing, but not for stable integration of U4/U6.U5 tri-snRNPs. Thus, comparison of the proteomes of spliceosomal complexes at defined stages can provide information as to which proteins function as a group at a particular step of splicing.  相似文献   

15.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

16.
Antibodies specific for N6-methyladenosine (m6A) were elicited in rabbits and used to study the accessibility in intact snRNPs of the m6A residues present in the snRNAs U2, U4 and U6. The antibody quantitatively precipitates snRNPs U2 and U4/U6 from total nucleoplasmic snRNPs U1-U6 isolated from HeLa cells, which demonstrates that the m6A residues of the respective snRNAs are not protected by snRNP proteins in the snRNP particles. While the anti-m6A IgG does not react at all with U5 RNPs lacking m6A, a significant amount of U1 RNPs was co-precipitated despite the fact that U1 RNA does not contain m6A either. Since anti-m6A IgG does not react with purified U1 RNPs and co-precipitation of U1 RNPs is dependent on the presence of U2 RNPs but not of U4/U6 RNPs, these data indicate an interaction between snRNPs U1 and U2 in vitro. The anti-m6A precipitation pattern described above was also observed with snRNPs isolation from mouse Ehrlich ascites tumor cells, indicating similar three-dimensional arrangements of snRNAs in homologous snRNP particles from different organisms.  相似文献   

17.
18.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

19.
In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist of a number of proteins shared by all the snRNPs, and some proteins which appear to be specific to individual snRNP particles. On the basis of their apparent molecular weight and antigenicity many of these common and particle specific Drosophila snRNP proteins are remarkably conserved between Drosophila and human spliceosomes. By probing western blots of the Drosophila snRNP polypeptides with a number of antisera raised against human snRNP proteins, Drosophila polypeptides equivalent to many of the HeLa snRNP-common proteins have been identified, as well as candidates for a number of U1, U2 and U5-specific proteins.  相似文献   

20.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号