首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Fibronectin-binding surface proteins are found in many bacterial species. Most strains of Streptococcus pyogenes, a major human pathogen, express the fibronectin-binding protein F1, which promotes bacterial adherence to and entry into human cells. In this study, the role of fibronectin in S. pyogenes virulence was investigated by introducing the protein F1 gene in an S. pyogenes strain lacking this gene. Furthermore, transgenic mice lacking plasma fibronectin were used to examine the relative contribution of plasma and cellular fibronectin to S. pyogenes virulence. Unexpectedly, protein F1-expressing bacteria were less virulent to normal mice, and virulence was partly restored when these bacteria were used to infect mice lacking plasma fibronectin. Dissemination to the spleen of infected mice was less efficient for fibronectin-binding bacteria. These bacteria also disseminated more efficiently in mice lacking plasma fibronectin, demonstrating that plasma fibronectin bound to the bacterial surface downregulates S. pyogenes virulence by limiting bacterial spread. From an evolutionary point of view, these results suggest that reducing virulence by binding fibronectin adds selective advantages to the bacterium.  相似文献   

2.
In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.  相似文献   

3.
4.
Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided key information for the elucidation of the host-pathogen interactions and might assist in the development of potential chemotherapeutic strategies to prevent or treat streptococcal diseases.  相似文献   

5.
Streptococcus pyogenes, or group A Streptococcus, is one of the most frequent causes of pharyngitis and skin infections in humans. Many virulence mechanisms have been suggested to be involved in the infectious process. Among them is the binding to the bacterial cell surface of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), and C4b-binding protein. Previous studies indicate that binding of these three regulators to the streptococcal cell involves the M protein encoded by the emm gene. M-type 18 strains are prevalent among clinical isolates and have been shown to interact with all three complement regulators simultaneously. Using isogenic strains lacking expression of the Emm18 or the Enn18 proteins, we demonstrate in this study that, in contradistinction to previously described S. pyogenes strains, M18 strains bind the complement regulators factor H, FHL-1, and C4b-binding protein through two distinct cell surface proteins. Factor H and FHL-1 bind to the Emm18 protein, while C4BP binds to the Enn18 protein. We propose that expression of two distinct surface structures that bind complement regulatory proteins represents a unique adaptation of M18 strains that enhances their resistance to opsonization by human plasma and increases survival of this particular S. pyogenes strain in the human host. These new findings illustrate that S. pyogenes has evolved diverse mechanisms for recruitment of complement regulatory proteins to the bacterial surface to evade immune clearance in the human host.  相似文献   

6.
In the present study, we have generated a mutant strain of Streptococcus pyogenes, MC25, which lacks M protein on its surface, and we demonstrate that this strain is unable to generate a mature 28 kDa cysteine proteinase. Furthermore, we show that S. pyogenes bacteria of M1 serotype are dependent on cell wall-anchored M protein to cleave the secreted zymogen into a mature cysteine proteinase. We also show that MC25 secretes a 40 kDa zymogen, having a conformation different from that secreted by wild-type bacteria. We provide data showing that the cleavage site is not blocked but, presumably, the active site is. This suggests that M protein, when anchored to the cell wall, is involved in the unfolding of the zymogen and generation of a mature cysteine proteinase that can be activated under reducing conditions. Our data add new aspects to the interaction between two important virulence factors of S. pyogenes, the streptococcal cysteine proteinase and M protein.  相似文献   

7.
The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42 degrees C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42 degrees C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them.  相似文献   

8.
9.
Streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes is a clinical condition with a high mortality rate despite modern intensive care. A key feature of STSS is excessive plasma leakage leading to hypovolemic hypotension, disturbed microcirculation and multiorgan failure. Previous work has identified a virulence mechanism in STSS where M1 protein of S. pyogenes forms complexes with fibrinogen that activate neutrophils to release heparin-binding protein (HBP), an inducer of vascular leakage. Here, we report a marked inter-individual difference in the response to M1 protein-induced HBP release, a difference found to be related to IgG antibodies directed against the central region of the M1 protein. To elicit massive HBP release, such antibodies need to be part of the M1 protein-fibrinogen complexes. The data add a novel aspect to bacterial pathogenesis where antibodies contribute to the severity of disease by promoting a pathologic inflammatory response.  相似文献   

10.
The R28 protein is a surface molecule expressed by some strains of Streptococcus pyogenes (group A streptococcus). Here, we present evidence that R28 may play an important role in virulence. Sequence analysis demonstrated that R28 has an extremely repetitive sequence and can be viewed as a chimera derived from the three surface proteins Rib, alpha and beta of the group B streptococcus (GBS). Thus, the gene encoding R28 may have originated in GBS. The R28 protein promotes adhesion to human epithelial cells, as shown by experiments with an R28-negative mutant and by the demonstration that antibodies to highly purified R28 inhibited adhesion. In a mouse model of lethal intraperitoneal S. pyogenes infection, antibodies to R28 conferred protective immunity. However, the virulence of an R28-negative mutant was similar to that of the parental strain in the intraperitoneal infection model. Together, these data indicate that R28 represents a novel type of adhesin expressed by S. pyogenes and that R28 may also act as a target for protective antibodies at later stages of an infection. We consider the hypothesis that R28 played a pathogenetic role in the well-known epidemics of childbed fever (puerperal fever), which were caused by S. pyogenes. A role for R28 in these epidemics is suggested by epidemiological data.  相似文献   

11.
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.  相似文献   

12.
Several microbial pathogens have been reported to interact with glycosaminoglycans (GAGs) on cell surfaces and in the extracellular matrix. Here we demonstrate that M protein, a major surface-expressed virulence factor of the human bacterial pathogen, Streptococcus pyogenes, mediates binding to various forms of GAGs. Hence, S. pyogenes strains expressing a large number of different types of M proteins bound to dermatan sulfate (DS), highly sulfated fractions of heparan sulfate (HS) and heparin, whereas strains deficient in M protein surface expression failed to interact with these GAGs. Soluble M protein bound DS directly and could also inhibit the interaction between DS and S. pyogenes. Experiments with M protein fragments and with streptococci expressing deletion constructs of M protein, showed that determinants located in the NH2-terminal part as well as in the C-repeat region of the streptococcal proteins are required for full binding to GAGs. Treatment with ABC-chondroitinase and HS lyase that specifically remove DS and HS chains from cell surfaces, resulted in significantly reduced adhesion of S. pyogenes bacteria to human epithelial cells and skin fibroblasts. Together with the finding that exogenous DS and HS could inhibit streptococcal adhesion, these data suggest that GAGs function as receptors in M protein-mediated adhesion of S. pyogenes.  相似文献   

13.
Streptococcus pyogenes (group A Streptococcus, GAS) is a human pathogen that causes diseases of various intensity, from mild strep throat to life threatening invasive infections and postinfectional sequelae. S. pyogenes encodes multiple, often phage encoded, virulence factors and their presence is related to severity of the disease. Acquisition of mobile genetic elements, carrying virulence factors, as phages or ICEs (integrative and cojugative elements) has been shown previously to promote selection of virulent clones. We designed the system of eight low volume multi- and one singleplex PCR reactions to detect genes encoding twenty virulence factors (spd3, sdc, sdaB, sdaD, speB, spyCEP, scpA, mac, sic, speL, K, M, C, I, A, H, G, J, smeZ and ssa) and twenty one phage and ICE integration sites described so far for S. pyogenes. Classification of strains based on the phage and virulence factors absence or presence, correlates with PFGE MLST and emm typing results. We developed a novel, fast and cost effective system that can be used to detect GAS virulence factors. Moreover, this system may become an alternative and effective system to differentiate between GAS strains.  相似文献   

14.
Pathogenic bacteria often produce proteinases that are believed to be involved in virulence. Moreover, several host defence systems depend on proteolysis, demonstrating that proteolysis and its regulation play an important role during bacterial infections. Here, we discuss how proteolytical events are regulated at the surface of Streptococcus pyogenes during infection with this important human pathogen. Streptococcus pyogenes produces proteinases, and host proteinases are produced and released as a result of the infection. Streptococcus pyogenes also recruits host proteinase inhibitors to its surface, suggesting that proteolysis is tightly regulated at the bacterial surface. We propose that the initial phase of a S. pyogenes infection is characterized by inhibition of proteolysis and complement activity at the bacterial surface. This is achieved mainly through binding of host proteinase inhibitors and complement regulatory proteins to bacterial surface proteins. In a later phase of the infection, massive proteolytic activity will release bacterial surface proteins and degrade human tissues, thus facilitating bacterial spread. These proteolytic events are regulated both temporally and spatially, and should influence virulence and the outcome of S. pyogenes infections.  相似文献   

15.
Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes, 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.  相似文献   

16.
Human fibrinogen (Fg) binds to surface proteins expressed by many pathogenic bacteria and has been implicated in different host-pathogen interactions, but the role of bound Fg remains unclear. Here, we analyse the role of Fg bound to Streptococcus pyogenes M protein, a major virulence factor that confers resistance to phagocytosis. Studies of the M5 system showed that a chromosomal mutant lacking the Fg-binding region was completely unable to resist phagocytosis, indicating that bound Fg plays a key role in virulence. Deposition of complement on S. pyogenes occurred via the classical pathway even under non-immune conditions, but was blocked by M5-bound Fg, which reduced the amount of classical pathway C3 convertase on the bacterial surface. This property of M protein-bound Fg may explain its role in phagocytosis resistance. Previous studies have shown that many M proteins do not bind Fg, but interfere with complement deposition and phagocytosis by recruiting human C4b-binding protein (C4BP), an inhibitor of the classical pathway. Thus, all M proteins may share ability to recruit a human plasma protein, Fg or C4BP, which inhibits complement deposition via the classical pathway. Our data identify a novel function for surface-bound Fg and allow us to propose a unifying mechanism by which M proteins interfere with innate immunity.  相似文献   

17.
Streptococcus pyogenes is a Gram-positive bacterium that causes several diseases, including acute tonsillitis and toxic shock syndrome. The surface-localized M protein, which is the most extensively studied virulence factor of S. pyogenes, has an approximately 50-residue N-terminal hypervariable region (HVR) that plays a key role in the escape of the host immunity. Despite the extensive sequence variability in this region, many HVRs specifically bind human C4b-binding protein (C4BP), a plasma protein that inhibits complement activation. Although the more conserved parts of M protein are known to have dimeric coiled-coil structure, it is unclear whether the HVR also is a coiled coil. Here, we use nuclear magnetic resonance (NMR) to study the conformational properties of HVRs from M4 and M22 proteins in isolation and in complex with the M protein binding portion of C4BP. We conclude that the HVRs of M4 and M22 are folded as coiled coils and that the folded nucleus of the M4 HVR has a length of approximately 27 residues. Moreover, we demonstrate that the C4BP binding surface of M4-N is found within a region of four heptad repeats. Using molecular modeling, we propose a model for the structure of the M4 HVR that is consistent with our experimental information from NMR spectroscopy.  相似文献   

18.
Recent studies have shown that activation of complement and contact systems results in the generation of antibacterial peptides. Streptococcus pyogenes, a major bacterial pathogen in humans, exists in >100 different serotypes due to sequence variation in the surface-associated M protein. Cases of invasive and life-threatening S. pyogenes infections are commonly associated with isolates of the M1 serotype, and in contrast to the large majority of M serotypes, M1 isolates all secrete the SIC protein. Here, we show that SIC interferes with the activation of the contact system and blocks the activity of antibacterial peptides generated through complement and contact activation. This effect promotes the growth of S. pyogenes in human plasma, and in a mouse model of S. pyogenes sepsis, SIC enhances bacterial dissemination, results which help explain the high frequency of severe S. pyogenes infections caused by isolates of the M1 serotype.  相似文献   

19.
In infection by Streptococcus pyogenes, fibronectin (Fn)-binding proteins play important roles as adhesins and invasins. Here, we present a novel Fn-binding protein of S. pyogenes that exhibits a low similarity to other Fn-binding proteins reported. After searching the Oklahoma Streptococcal Genome Sequencing Database for open reading frames (ORFs) with an LPXTG motif, nine ORFs were found among those recognized as putative surface proteins, and one of them was designated as Fba. The fba gene was found in M types 1, 2, 4, 22, 28 and 49 of S. pyogenes, but not in other serotypes or groups of streptococci. Fba, a 37.8 kDa protein, possesses three or four proline-rich repeat domains and exhibits a high homology to FnBPA, the Fn-binding protein of Staphylococcus aureus. Recombinant Fba exhibited a strong binding ability to Fn. In addition, Fba-deficient mutants showed diminished invasive capabilities to HEp-2 cells and low mortality in mice following skin infection. The fba gene was located downstream of the mga regulon and analysis using an mga-inactivated mutant revealed that it was transcribed under the control of the Mga regulator. These results indicate that Fba is a novel protein and one of the important virulence factors of S. pyogenes.  相似文献   

20.
Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号