首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed.  相似文献   

2.
By means of light microscopical techniques and scanning electron microscopy spatial organization of the lacunar-canalicular system (LCS) has been studied in structures of a mature lamellar bone. A method for making corrosive casts of osseous lacunae and canaliculi is suggested, owing to which their spatial organization can be analysed. Certain data on interconnections of the osseous lacunae with each other and with vascular canals and natural surfaces of the bone are presented. The role of LCS as a component of the microcirculatory bed of the lamellar bone is discussed.  相似文献   

3.
Even though mechanical properties depend strongly on the arrangement of collagen fibers in mineralized tissues, it is not yet well resolved. Only a few semi-quantitative evaluations of the fiber arrangement in bone, like spectroscopic techniques or circularly polarized light microscopy methods are available. In this study the out-of-plane collagen arrangement angle was calibrated to the linear birefringence of a longitudinally fibered mineralized turkey leg tendon cut at variety of angles to the main axis. The calibration curve was applied to human cortical bone osteons to quantify the out-of-plane collagen fibers arrangement. The proposed calibration curve is normalized to sample thickness and wavelength of the probing light to enable a universally applicable quantitative assessment. This approach may improve our understanding of the fibrillar structure of bone and its implications on mechanical properties.  相似文献   

4.
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.  相似文献   

5.
Laser scanning confocal microscopy (LSCM) offers a significant improvement over conventional bright-field and dark-field light microscopy for producing images of silver grains in autoradiograms of specimens prepared by in situ hybridization. The out-of-focus image of the background silver grains present in the emulsion is eliminated from the in-focus image of the radioactive probe associated with the cells by optical sectioning with the LSCM operated in a reflected light mode. The improved images produced by the LSCM provide a significant increase in the sensitivity of detecting positively labeled cells and tissues prepared by in situ hybridization. The power of this detection method is demonstrated using samples of HIV-infected human peripheral blood cells, tissue sections of human placenta and human skin. It is anticipated that the method can be universally applied to samples prepared by in situ hybridization techniques.  相似文献   

6.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

7.
BacKGROUND AND AIMS: The great potential of using nanodevices as delivery systems to specific targets in living organisms was first explored for medical uses. In plants, the same principles can be applied for a broad range of uses, in particular to tackle infections. Nanoparticles tagged to agrochemicals or other substances could reduce the damage to other plant tissues and the amount of chemicals released into the environment. To explore the benefits of applying nanotechnology to agriculture, the first stage is to work out the correct penetration and transport of the nanoparticles into plants. This research is aimed (a) to put forward a number of tools for the detection and analysis of core-shell magnetic nanoparticles introduced into plants and (b) to assess the use of such magnetic nanoparticles for their concentration in selected plant tissues by magnetic field gradients. METHODS: Cucurbita pepo plants were cultivated in vitro and treated with carbon-coated Fe nanoparticles. Different microscopy techniques were used for the detection and analysis of these magnetic nanoparticles, ranging from conventional light microscopy to confocal and electron microscopy. KEY RESULTS: Penetration and translocation of magnetic nanoparticles in whole living plants and into plant cells were determined. The magnetic character allowed nanoparticles to be positioned in the desired plant tissue by applying a magnetic field gradient there; also the graphitic shell made good visualization possible using different microscopy techniques. CONCLUSIONS: The results open a wide range of possibilities for using magnetic nanoparticles in general plant research and agronomy. The nanoparticles can be charged with different substances, introduced within the plants and, if necessary, concentrated into localized areas by using magnets. Also simple or more complex microscopical techniques can be used in localization studies.  相似文献   

8.
A procedure is presented for exact, detailed comparison of light and electron microscopic analyses of tissues with complex architecture. Earlier techniques require one to make drawings of tissue pieces to be analyzed by electron microscopy to permit rough localization of the origin of the tissue pieces. Specifically, exact analysis of fetal cartilage and bone is hampered by the complicated arrangement of both tissue components, severely limiting the assessment of electron microscopic analyses. The advantage of the technique described here is that it allows precise localization of the tissue sample in the original tissue area. Punches 1 mm in diameter were obtained from femora and coxae with a syringe and embedded for light and electron microscopy. The remaining tissue with its exactly defined punctures is prepared for standard histology. Human fetal cartilage and bone tissue were used to demonstrate this technique, but this procedure may be used for other kinds of tissues.  相似文献   

9.
Assessing phytoplankton diversity is of primary importance for both basic and applied ecological studies. Following the advances in molecular methods, phytoplankton studies are switching from using classical microscopy to high throughput sequencing approaches. However, methodological comparisons of these approaches have rarely been reported. In this study, we compared the two methods, using a unique dataset of multiple water samples taken from a natural freshwater environment. Environmental DNA was extracted from 300 water samples collected weekly during 20 years, followed by high throughput sequencing of amplicons from the 16S and 18S rRNA hypervariable regions. For each water sample, phytoplankton diversity was also estimated using light microscopy. Our study indicates that species compositions detected by light microscopy and 454 high throughput sequencing do not always match. High throughput sequencing detected more rare species and picoplankton than light microscopy, and thus gave a better assessment of phytoplankton diversity. However, when compared to light microscopy, high throughput sequencing of 16S and 18S rRNA amplicons did not adequately identify phytoplankton at the species level. In summary, our study recommends a combined strategy using both morphological and molecular techniques.  相似文献   

10.
Correlative Light Electron Microscopy (CLEM) aims at combining the best of light and electron microscopy in one experiment. Light microscopy (LM) is especially suited for providing a general overview with data from lots of different cells and by using live cell imaging it can show the history or sequence of events between or inside cells. Electron microscopy (EM) on the other hand can provide a much higher resolution image of a particular event and provide additional spatial information, the so-called reference space. CLEM thus has certain strengths over the application of both LM and EM techniques separately. But combining both modalities however generally also means making compromises in one or both of the techniques. Most often the preservation of ultrastructure for the electron microscopy part is sacrificed. Ideally samples should be visualized in its most native state both in the light microscope as well as the electron microscope. For electron microscopy this currently means that the sample will have to be cryo-fixed instead of the standard chemical fixation. In this paper we will discuss the rationale for using cryofixation for CLEM experiments. In particular we will highlight a CLEM technique using high-pressure freezing in combination with live cell imaging. In addition we examine some of the EM analysis tools that may be useful in combination with CLEM techniques.  相似文献   

11.
Enzymes and tissue antigens were localized on plastic embedded undecalcified bones and teeth using Technovit 7200 VLC (Kulzer, Germany). This resin is hard enough for cutting and grinding procedures on rotating plates with diamond layers. The pores between the diamond grains are not obstructed with this resin. The procedure described here permits localization of antigens in the soft tissues adjacent to, or in the biological hard tissues themselves and in dental implants (ceramic or metallic) on the light microscopic level. The undecalcified bone is fixed and embedded in plastic and cut at 100-150 μm. The slices are ground automatically by a grinding machine to a thickness of 5-10 μm. After application of the substrates for alkaline and acid phosphatases and the required dyes, the distribution of these enzymes can be demonstrated. Tissue antigens also can be detected with slightly modified standard techniques of immunohistochemistry and lectin histochemistry using the peroxidase technique or fluorescence microscopy.  相似文献   

12.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

13.
Microscopy is an essential tool for analysis of cellular structures and function. With the advent of new fluorescent probes and super-resolution light microscopy techniques, the study of dynamic processes in living cells has been greatly facilitated. Fluorescence light microscopy provides analytical, quantitative, and three-dimensional (3D) data with emphasis on analysis of live cells using fluorescent markers. Sample preparation is easy and relatively inexpensive, and the use of appropriate tags provides the ability to track specific proteins of interest. Of course, only electron microscopy (EM) achieves the highest definition in terms of ultrastructure and protein labeling. To fill the gap between light microscopy and EM, correlative light and electron microscopy (CLEM) strategies have been developed. In particular, hybrid techniques based upon immuno-EM provide sensitive protein detection combined with high-resolution information on cell structures and protein localization. By adding the third dimension to EM with electron tomography (ET) combined with rapid freezing, CLEM techniques now provide additional tools for quantitative 3D analysis. Here, we overview the major methods applied and highlight the latest advances in the field of CLEM. We then focus on two selected techniques that use cryosections as substrate for combined biomolecular imaging. Finally, we provide a perspective of future developments in the field. (J Histochem Cytochem 57:1103–1112, 2009)  相似文献   

14.
15.
Light microscopy and transmission electron microscopy work at such different scales that some components of cells may be too small to detect using light microscopy but too dispersed among cells within tissues to be discovered using electron microscopy. We have used reflectance mode confocal laser scanning microscopy to detect single-domain magnetite crystals in both live and resin-embedded preparations of magnetotactic bacteria. We show that reflections from bacterial cells are uniquely associated with the magnetite, which underpins the magnetotactic response of the bacteria. En bloc viewing shows that relatively large volumes of material can be searched with sufficient resolution to enable detection of submicroscopic particles. The techniques reported here may be of interest to others wishing to detect submicroscopic objects dispersed in large volumes of tissue.  相似文献   

16.
We have developed a new decalcifying technique for use in light and electron microscopy studies utilizing immunohistochemical staining of calcified tissues. Specimens containing calcified tissues can be adequately decalcified at a pH of 7.1-7.4 and temperature of -5 degrees C, without freezing, by use of a solution containing EDTA, sodium hydroxide, and glycerol. In this study, Leu-2a, Leu-3a, Leu-4, Leu-7, Leu-12, Leu-14, Leu-M1, Leu-M2, Leu-M3, and HLA-DR-positive cells in destructive lesions of bone tissues from patients with rheumatoid arthritis and osteomyelitis were successfully detected immunohistochemically. Furthermore, the presence of HLA-DR antigen on the surface of the infiltrating cells in the same lesions could be demonstrated using the immunoelectron microscopic technique. The results reported here have not previously been obtainable using conventional decalcifying techniques.  相似文献   

17.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin™ as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin™ for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

18.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin? as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin? for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

19.
In the era of intravascular cell application protocols in the context of regenerative cell therapy, the underlying mechanisms of stem cell migration to nonmarrow tissue have not been completely clarified. We describe here the technique of intravital microscopy applied to the mouse cremaster microcirculation for analysis of peripheral bone marrow stem cell migration in vivo. Intravital microscopy of the M. cremaster has been previously introduced in the field of inflammatory research for direct observation of leucocyte interaction with the vascular endothelium. Since sufficient peripheral stem and progenitor cell migration includes similar initial steps of rolling along and firm adhesion at the endothelial lining it is conceivable to apply the M. cremaster model for the observation and quantification of the interaction of intravasculary administered stem cells with the endothelium. As various chemical components can be selectively applied to the target tissue by simple superfusion techniques, it is possible to establish essential microenvironmental preconditions, for initial stem cell recruitment to take place in a living organism outside the bone marrow.  相似文献   

20.
Apposition of cementum occurs in phases resulting in two types of layers with different optical and staining properties that can be observed by light microscopy. Narrow, dark staining incremental lines are separated by wider bands of pale staining cementum. The distance from one line to the next represents a yearly increment deposit of cementum in many mammals, and counting these lines has been used routinely to estimate the age of the animals. Incremental lines in cementum have also been observed in sections of human teeth, and the object of the present investigation was to examine a number of methods for preparing and staining them for counting. Longitudinal and transverse sections, either ground or decalcified, were cut from formalin fixed human dental roots, paraffin embedded or frozen, and stained using several techniques. The cementum was investigated using conventional light, fluorescence, polarized light, confocal laser scanning, interference contrast, phase contrast, and scanning electron microscopy. Incremental lines in the cementum could be observed in ground sections and, following decalcification, in both frozen and paraffin embedded sections. Toluidine blue, cresyl violet, hematoxylin, or periodic acid Schiff (PAS) stained incremental lines allowing differentiation by conventional light microscopy. Contrast was best using fluorescence microscopy and excitation by green light since the stained cemental bands, but not the incremental lines, fluoresced after staining with cresyl violet, PAS or hematoxylin and eosin. The results with other microscopic techniques were unsatisfactory. Since incremental lines are not destroyed by acids and stain differently than the remaining cementum, it is likely that they possess an organic structure which differs from the cementum. Incremental lines in human dental cementum could be observed best using decalcified sections stained with cresyl violet excited by green light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号