首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cofactor required in the methylcoenzyme M methylreductase reaction was shown to be a large molecule with an Mr of 1149.21 in the free acid form. The cofactor, named MRF for methyl reducing factor, was identified from analyses by fast atom bombardment mass spectrometry and 1H, 13C, and 31P NMR spectroscopy as uridine 5'-[N-(7-mercaptoheptanoyl)-O-3-phosphothreonine-P-yl(2-acetamido- 2-deoxy- beta-mannopyranuronosyl)(acid anhydride)]-(1----4)-O-2-acetamido-2-deoxy- alpha-glucopyranosyl diphosphate. MRF contains N-(7-mercaptoheptanoyl)threonine O-3-phosphate (HS-HTP) [No11, K. M., Rinehart, K. L., Tanner, R. S., & Wolfe, R. S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4238-4242] and is linked to C-6 of 2-acetamido-2-deoxymannopyranuronic acid of the UDP-disaccharide through a carboxylic-phosphoric anhydride linkage. It is postulated that this bond is responsible for the instability of the molecule and its hydrolysis during isolation. Analyses of Eadie and Hofstee plots of the methylcoenzyme M methylreductase reaction indicate that MRF has a 6-fold lower Km(app) than HS-HTP and a 50% greater Vmax. This suggests that the UDP-disaccharide moiety may be of importance in the binding of MRF to the enzyme active site.  相似文献   

2.
The reduction of methylcoenzyme M to methane is known to require a heat stable and oxygen sensitive cofactor. Recently it has been shown that the active site of this cofactor is 7-mercaptoheptanoylthreonine phosphate. The present study shows that in the complete structure of this cofactor 7-mercaptoheptanoylthreonine phosphate is linked by pyrophosphate to two N-acetyl-glucosamine residues and an unidentified terminal group R with m/z 214. By fast-atom-bombardment mass spectrometry the intact cofactor, isolated as the mixed disulfide with 2-mercaptoethanol, was shown to have a molecular weight of 1084.5. The pyrophosphate bond is quite labile and undergoes hydrolysis or prolonged storage. This lability of the pyrophosphate bond may explain why the intact cofactor has not been isolated until now.  相似文献   

3.
The structure of component B of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). Three potential roles for this cofactor were considered. First, a methyl thioether derivative of the cofactor was synthesized to investigate its possible role as a methyl donor. This derivative was found to be incapable of acting as a substrate for methanogenesis and proved inhibitory. Secondly, an adenylated form of the cofactor was considered as the potential active form of the coenzyme. This possibility was ruled out based upon collaborative observations with Ankel-Fuchs et al. (FEBS Lett., in press) that HS-HTP is required by the methylreductase system even when ATP is not. Finally, HS-HTP was found to act as a reductant in a partially-purified methylreductase preparation that was incubated under nitrogen. The rate of methane production from HS-HTP exceeded that from other thiols or hydrogen.  相似文献   

4.
A fragment of Micrococcus lysodeikticus cell-wall obtained by cetylpyridinium recipitation from the nondialyzable portion of the degradation products of egg-white lysozyme was studied by the periodate oxidation and methylation procedures. The fragment consists of a polysaccharide chain composed of about 40 repeating (1 leads to 4)-O-(2-acetamido-2-deoxy-beta-D-mannopyranosyluronic acid)-(1 leads to 6)-O-(alpha-D-glucopyranosyl) residues with D-glucopyranosyl residues at both ends. The alpha-D-glucopyranose residue at the reducing end is linked to a phosphate group that is also linked to C-6 of a 2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl residue of a peptidoglycan chain composed of four repeating (1 leads to 4)-O-[2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl] residues. The peptidoglycan chain has, as nonreducing group, a 2-acetamido-2-deoxy-beta-D-glucopyranosyl group, and, as reducing residue, a 2-acetamido-3-O-(D-1-carboxytheyl)-2-deoxy-beta-D-glucose residue.  相似文献   

5.
Hydrogenphosphonate method was used for synthesis of 4-nitrophenyl 2-acetamido-3- and 4-nitrophenyl 2-acetamido-4-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl phosphate)-2-deoxy-beta-D-glucopyranosides. The glycosides, phosphate diester fragments of the title bacteria capsular antigens, were obtained by H-phosphorylation of the suitably protected 2-acetamido-2-deoxy-beta-D-glucopyranosides with 2-acetamido-3,4,6-tri-O-benzoyl-2-deoxy-alpha-D-glucopyranosyl H-phosphonate in the presence of trimethylacetyl chloride followed by oxidation and deprotection.  相似文献   

6.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

7.
31P ENDOR spectra are described for three different molybdenum(V) species in reduced xanthine oxidase samples. The spectra were not affected by removing the FAD from the enzyme, implying that this is located at some distance from molybdenum. Furthermore, in confirmation of the work of J. L. Johnson, R. E. London, and K. V. Rajagopalan [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6493-6497], NMR and chemical analysis of the phosphate content of highly purified xanthine oxidase showed there are only three phosphate residues per subunit of the enzyme. It is concluded that the ENDOR features are due to hyperfine coupling of the phosphate group of the pterin cofactor to the molybdenum atom. Evaluation of the dipolar component of the coupling has permitted estimation of the molybdenum-phosphorus distances as 7-12 A. This implies that the cofactor is in an extended conformation in the enzyme molecule. Less detailed 31P ENDOR data on sulfite oxidase are consistent with a similar conformation for the cofactor in this enzyme.  相似文献   

8.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

9.
Cofactor specificity in the aldo‐keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site‐directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild‐type. Results of previous pre‐steady‐state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2′‐phosphate of the cofactor. Pre‐steady‐state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2′‐phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex. Biotechnol. Bioeng. 2010;107: 763–774. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
The external polysaccharide is a major component of Micrococcus lysodeikticus cell wall and displays distinct composition. The complete structure of the external polysaccharide had been elucidated as a basis for investigation of the cell wall structure-function relation. However, the mode of attachment of the polysaccharide to the peptidoglycan through a phosphodiester was not clear due to limitations in structural and biosynthetic studies. The present study describes purification of a lysozyme-resistant nondialyzable high-molecular-weight fragment of cell wall and identifies the sugar, D-glucose, as the point of external polysaccharide attachment to the peptidoglycan through a phosphate diester. Kinetic studies for the acid-catalyzed release of external polysaccharide from the peptidoglycan were performed in parallel with synthetic [methyl-2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-alpha-D- glucopyranoside-6-yl]-alpha-D-glucopyranosyl phosphate and alpha-D-glucopyranosyl phosphate and showed the presence of a phosphodiester linkage between external polysaccharide and peptidoglycan. In addition, type of phosphate residue and cross-linking between muramic acid and protein part have been determined.  相似文献   

11.
Abstract Component B ( N -7-mercaptoheptanoyl-threonine- O -3-phosphate) (HS-HTP) which is an absolute requirement in the methylcoenzyme M methylreductase reaction was found to be part of a complex UDP-disaccharide when isolated carefully from cell-free supernant of Methanobacterium thermoautotrophicum . The site of attachment of HS-HTP to the UDP-disaccharide was through a carboxylic-phosphoric anhydride linkage of the C-6 mannosaminuronic acid to the phosphate group in HS-HTP. This bond is quite labile and this may account for the fact that the intact molecule, called methyl reducing factor (MRF) was not isolated previously. The structure of MRF was determined by combined fast atom bombardment mass spectrometry and 1H-, 13C-, and 31P-NMR spectroscopy and assigned as: uridine 5'-[ N -7-mercaptoheptanoyl- O -3-phosphothreonine(2-acetamido-2-deoxy- β -mannopyranuronosyl)acid anhydride]-(1 → 4)- O -2-acetamido-2-deoxy α -glucopyranosyl diphosphate.  相似文献   

12.
Pyridoxal 5'-phosphate is an essential cofactor for many enzymes responsible for the metabolic conversions of amino acids. Two pathways for its de novo synthesis are known. The pathway utilized by Escherichia coli consists of six enzymatic steps catalyzed by six different enzymes. The fourth step is catalyzed by 4-hydroxythreonine-4-phosphate dehydrogenase (PdxA, E.C. 1.1.1.262), which converts 4-hydroxy-l-threonine phosphate (HTP) to 3-amino-2-oxopropyl phosphate. This divalent metal ion-dependent enzyme has a strict requirement for the phosphate ester form of the substrate HTP, but can utilize either NADP+ or NAD+ as redox cofactor. We report the crystal structure of E. coli PdxA and its complex with HTP and Zn2+. The protein forms tightly bound dimers. Each monomer has an alpha/beta/alpha-fold and can be divided into two subdomains. The active site is located at the dimer interface, within a cleft between the two subdomains and involves residues from both monomers. A Zn2+ ion is bound within each active site, coordinated by three conserved histidine residues from both monomers. In addition two conserved amino acids, Asp247 and Asp267, play a role in maintaining integrity of the active site. The substrate is anchored to the enzyme by the interactions of its phospho group and by coordination of the amino and hydroxyl groups by the Zn2+ ion. PdxA is structurally similar to, but limited in sequence similarity with isocitrate dehydrogenase and isopropylmalate dehydrogenase. These structural similarities and the comparison with a NADP-bound isocitrate dehydrogenase suggest that the cofactor binding mode of PdxA is very similar to that of the other two enzymes and that PdxA catalyzes a stepwise oxidative decarboxylation of the substrate HTP.  相似文献   

13.
The structure of component B of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). The work described here demonstrates that this compound is found in two forms: enzyme-free and enzyme-bound. HS-HTP was found to be bound to component C of the methylcoenzyme M methylreductase system. The cofactor extracted from the protein by heat denaturation was found to comigrate with the mixed disulfide of HS-HTP and 2-mercaptoethanol by high-performance liquid chromatography, suggesting HS-HTP is not modified in the bound state.  相似文献   

14.
The cofactor analogue N-(bromoacetyl)pyridoxamine (BAPM) has been employed to inactivate the cytosolic isozyme of apo-aspartate aminotransferase. Inactivation is the result of covalent bond formation in the (bromoacetyl)-pyridoxamine-transferase complex, via the epsilon-amino group of a lysyl residue at the active site. The stoichiometry of this inactivation is one molecule of (bromoacetyl)pyridoxamine per subunit of the transaminase dimer. Trace amounts of inorganic phosphate protect the enzyme from BAPM inactivation. In the absence of phosphate, inactivation demonstrates time, concentration, and pH dependence with an apparent pK for the target group of about 8.5 or higher. A tryptic peptide from the alpha subform has been obtained containing the carboxymethyl derivative of lysine-258, identifying this particular residue as the reactive group in the region of cofactor binding. Evidence is presented indicating that the pK of Lys-258 appears to be highly dependent upon the electrostatic state of neighboring groups in the active site region. Hence, experimentally obtained values vary according to the chemical nature and charge of the modifying agent or probe.  相似文献   

15.
The specific capsular polysaccharide produced by Actinobacillus pleuropneumoniae serotype 15 was determined to be a high-molecular-mass polymer having [alpha]D + 69 degrees (water) and composed of a linear backbone of phosphate diester linked disaccharide units of 2-acetamido-2-deoxy-D-glucose (D-GlcNAc) and 2-acetamido-2-deoxy-D-galactose (D-GalNAc) residues (1:1). Thirty percent of the D-GalNAc residues were substituted at O-4 by beta-D-galactopyranose (beta-D-Galp) residues. Through the application of chemical and NMR methods, the capsule, which defines the serotype specificity of the bacterium, was found to have the structure [structure: see text]. The O-polysaccharide (O-PS) component of the A. pleuro pneumoniae serotype 15 lipopolysaccharide (LPS) was characterized as a linear unbranched polymer of repeating pentasaccharide units composed of D-glucose (2 parts) and D-galactose (3 parts), shown to have the structure [structure: see text]. The O-PS was chemically identical with the O-antigen previously identified in the LPSs produced by A. pleuro pneumoniae serotypes 3 and 8.  相似文献   

16.
Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy-alpha-galactopyranose (13%) and 2-acetamido-2-deoxy-alpha-glucopyranose (6%) on position O-2, were found. A minor component was established to be a polymer of -->3-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-1-->4-ribitol-1-OPO3-->. The ratios of the three components were 56, 34, and 10 mol%, respectively. The Sh18 CWP was covalently bound to carrier proteins, and the immunogenicity of the resulting conjugates was evaluated in mice. Two methods of conjugation were compared: (i) binding of 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-activated hydroxyl groups of the CWP to adipic acid dihydrazide (ADH)-derivatized protein, and (ii) binding of the carbodiimide-activated terminal phosphate group of the CWP to ADH-derivatized protein. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with the homologous polysaccharide and with a number of other bacterial polysaccharides containing ribitol and glycerol phosphates, including H. influenzae types a and b and strains of Staphylococcus aureus and Staphylococcus epidermidis.  相似文献   

17.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

18.
The O-specific polysaccharide isolated by mild acid degradation of the lipopolysaccharide of Y. kristensenii strain 490 (O:12,25) contained D-glucose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose, glycerol, and phosphate in the ratios 2:2:1:1:1:1. On the basis of 31P- and 13C-n.m.r. data, methylation analysis, dephosphorylation, solvolysis with anhydrous hydrogen fluoride, and Smith degradation, it was concluded that the repeating unit of the polysaccharide was a branched hexaosylglycerol phosphate with the following structure. [formula: see text]  相似文献   

19.
1. Pyridoxal 5'-phosphate is a cofactor essential for the enzymic activity of aminolaevulinate synthetase from Rhodopseudomonas spheroides. It also aids activation of the low-activity enzyme by trisulphides such as cystine trisulphide, whereas inactivation of enzyme is facilitated by its absence. 2. The fluorescence spectrum of purified high-activity enzyme is that expected for a pyridoxal phosphate--Schiff base, but the firmly bound cofactor does not appear to be at the active centre. In dilute solutions of enzyme this grouping is inaccessible to nucleophiles such as glycine, hydroxylamine, borohydride and cyanide, at pH 7.4. 3. An active-centre Schiff base is formed between enzyne and added pyridoxal phosphate, which is accessible to nucleophiles. Concentrated solutions of this enzyme--Schiff base on treatment with glycine yield apo- and semi-apoenzyme, which can re-bind pyridoxal phosphate. 4. Two types of binding of pyridoxal phosphate are distinguishable in dilute solution of enzyme, but these become indistinguishable when concentrated solutions are treated with cofactor. A change occurs in the susceptibility towards borohydride of the fluorescence of the "structural" pyridoxal phosphate. 5. One or two molecules of cofactor are bound per subunit of mol. wt. 50 000 in semiapo- or holo-enzyme. The fluorescence of pyridoxamine phosphate covalently bound to enzyme also indicates one to two nmol of reducible Schiff base per 7000 units of activity in purified and partially purified samples of enzyme. 6. Cyanide does not convert high-activity into low-activity enzyme, but with the enzyme-pyridoxal phosphate complex it forms a yellow fluorescent derivative that is enzymically active.  相似文献   

20.
1. Reaction of 2-(N-acetoxy)-acetamidofluorene with orthophosphate buffer at pH7 yielded a large quantity of water-soluble fluorene derivatives, which showed absorption peaks at 303, 290 and 280nm. Tris buffer under similar conditions gave negligible reaction. 2. Hydrolysis of polar material with acid or alkaline phosphatases liberated equimolar amounts of inorganic phosphate and an ether-extractable fluorene derivative. On the basis of its u.v. spectrum, R(F) values after paper chromatography, solubility in alkali and colour with spray reagents, the derivative was characterized tentatively as 2-acetamido-5-hydroxyfluorene. 3. Polar material also contained a reactive fluorene derivative which gave characteristic reaction products with methionine and guanosine. The reactive derivative was characterized as a phosphate ester of 2-(N-hydroxy)-acetamidofluorene. 4. It is suggested that such reactive phosphate esters may also be some of the ultimate carcinogenic metabolites of carcinogenic aromatic hydroxamic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号