首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bouma  Tjeerd J.  Hengst  K.  Koutstaal  B.P.  van Soelen  J. 《Plant Ecology》2003,165(2):235-245
Contrasting soil conditions caused by different inundation frequenciesrequire different root growth strategies along the elevational gradient ofcoastal salt marshes. The objective of this study was to examine (1) if rootlifespan was shorter in Elymus pycnanthus, a relativelyfast-growing competitive species dominating high marshes, than inSpartina anglica, a relatively slow-growingstress-tolerating species dominating low marshes, and (2) if the species withlonger lifespan had higher tissue density (g cm–3) and lowerspecific root length (m g–1) than the species with shorterlifespan. Root production and mortality rates were established by samplingrootsin in-growth cores, and using triphenyltetrazolium chloride (TTC) staining todistinguish vital from dead roots. Root lifespan was estimated by dividing theliving root biomass (Elymus: 36 gm–2, Spartina: 100 gm–2) by root production (Elymus:0.28 g day–1 m–2,Spartina: 0.25 g day–1m–2) or root mortality rates(Elymus: 0.42–0.53 g day–1m–2). Spartina did not exhibitsubstantial mortality. Despite the present method only yielding rough estimatesof average root lifespan, it is evident that root longevity is much shorter inElymus than in Spartina. Rootlifespanranged between 10–19 weeks for Elymus but was closeto 1 year in Spartina, indicating thatElymus replaces it's roots continuously throughout thegrowing season, whereas Spartina maintains its roots overthe growing season. Fine roots of Elymus had slightlylowertissue density (0.094) than those of Spartina (0.139),whereas coarse roots of Elymus andSpartina had similar tissue density (0.100 gcm–3). Fine roots of Elymus andSpartina had similar specific root length (195 mg–1). However, coarse roots ofElymus (50 m g–1) had higherspecific root length than those of Spartina (20 mg–1) due to having smaller root diameter(Elymus: 548 m,Spartina: 961 m). We conclude thatpresentobservations on Elymus and Spartinasupport our first hypothesis that the competitive species fromthehigh marsh had short-lived roots compared to the'stress-tolerating'species from the low marsh. However, our result provide only weak support forthe existence of a positive correlation between root longevity and tissuedensity and a negative correlation between root longevity and specific rootlength.  相似文献   

2.
Annual planktonic primary production in five small oligotrophic lakes in Newfoundland, as measured at maximum depth (P-area) ranged from 5.6 to 12.0 g C/m2/year. Production per unit surface area representative of the whole lake basin (P-area ) was considerably lower in the shallower lakes (3.3 to 6.4 g C/m2/yr), while production expressed per unit volume representative of the whole lake basin (P-vol ) was the higher in the shallower lakes (0.6 to 4.1 g C/m3/yr). Production efficiency varied from lake to lake and throughout the year, but it remained fairly stable in a shorter term. Production efficiency and insolation was used to estimate annual production. Lakes with higher summer concentration of total phosphorus had higher rates of carbon assimilation.  相似文献   

3.
The growth characteristics and nutritional status ofSchoenoplectus tabernaemontani (C.C. Gmelin)Palla (soft-stem bulrush or lake clubrush) wereinvestigated during the second and third growthseasons in four equivalent subsurface-flow, gravel-bedconstructed treatment wetlands. Each wetland wassupplied with a different hydraulic loading rate ofagricultural wastewater, covering the range commonlyapplied to such systems. Harvest and demographictechniques were combined to determine seasonalpatterns and gradients of growth and nutrientallocation, and net annual primary productivity(NAPP). Marked seasonal patterns of early springemergence, summer growth and autumn senescence wereobserved, with little over-wintering of liveabove-ground biomass. Starch, the dominant long-termstorage substance, comprised 20% of rhizome dryweight (DW) in autumn. Mobilization during springreduced concentrations by around half, with a trend ofincreasing depletion in the higher loaded wetlands.NAPP, including above-ground mortality, during thesecond growth season ranged between 2.5 and 3.5 kg DWm-2, with 10-23% allocated to below-groundgrowth. Mean above-ground live and dead biomass rangedbetween 1.75 and 2.65 kg DW m-2 by mid-summer,with below to above-ground biomass ratios similar inall wetlands at between 0.6 and 0.7. Rhizomes, whichcomprised around 80% of the below-ground biomass,were generally restricted to the upper 10 cm of thesubstratum and over half the root biomass alsooccurred in this zone, with very few roots penetratingbelow 30 cm depth. High culm concentrations of N,P, Mg and Zn in spring declined markedly over thegrowth season, while S and Ca showed generalincreases, and K, Fe and Cu remained relativelystable. Gradients of decreasing tissue concentrationof most macronutrients were noted with increasingdistance from wastewater inflows. Plant accumulationof N rose by 20-35 g m-2 and P by 4-9 g m-2with seasonal re-growth of above-ground shoots. Netplant N and P uptake rates rose to maximum values of0.3 g N m-2 d-1 and 0.1 g P m-2d-1 in early summer, declining markedly duringlate summer and autumn. Mass balance assessments of Nand P accumulation in plants at near maximum seasonalbiomass, after three growth seasons, showed that only6 to 11% of the N removal and 6 to 13% of the Premoval recorded from wastewaters applied to thewetlands could be ascribed to plant uptake andaccumulation.  相似文献   

4.
The methane cycle in constructed wetlands without plants and withPhragmites australis (reed) and Scirpus lacustris (bulrush) wasinvestigated. Variations in CH4production largely determined variations in CH4 emission among the systems, rather than variations inCH4 storage and oxidation. Twofoldlower CH4 production rates in theScirpus system (5.6–13 mmol m-2 d-1) relative to the control (16.7–17.6 mmolm-2 d-1) were accompanied by a lower contribution ofmethanogenesis to organic carbon metabolism (20% for Scirpus vs.80% for control). Sedimentary iron(II) reservoirs were smallerin the Scirpus than control sediment (300 vs. 485 mmol.m-2) and a shuttle role for iron asan intermediate between root O2release and carbon oxidation, attenuating the availability of substrate formethanogens, is suggested. Differences in CH4 production among the Phragmites and Scirpus systemswere controlled by the interspecific variation in sediment oxidationcapacities of both plant species. Comparatively, in the Phragmites sediment,dissolved iron reservoirs were larger (340 mmol.m-2) and methanogenesis was a more importantpathway (80%). Methane transport was mainly plant mediated inthe Phragmites and Scirpus systems, but ebullition dominated in thenon-vegetated control systems as well as in the vegetated systems when plantbiomass was low.  相似文献   

5.
The C4 grass Echinochloa polystachya, which forms dense and extensive monotypic stands on the Varzea floodplains of the Amazon region, provides the most productive natural higher plant communities known. The seasonal cycle of growth of this plant is closely linked to the annual rise and fall of water level over the floodplain surface. Diurnal cycles of leaf photosynthesis and transpiration were measured at monthly intervals, in parallel with measurements of leaf area index, canopy light interception and biomass. By artificial manipulation of the light flux incident on leaves in the field light-response curves of photosynthesis at the top and near to the base of the canopy were generated. Fitted light-response curves of CO2 uptake were combined with information of leaf area index, incident light and light penetration of the canopy to estimate canopy rates of photosynthesis. Throughout the period in which the floodplains were submerged photosynthetic rates of CO2 uptake (A) for the emergent leaves were high with a mean of c. 30 mol m-2 s-1 at mid-day and occasional values of 40 mol m-2 s-1. During the brief dry phase, when the floodplain surface is uncovered, there was a significant depression of A, with mid-day mean values of c. 17 mol m-2 s-1. This corresponded with a c. 50% decrease in stomatal conductance, and a c. 35% depression in the ratio of the leaf inter-cellular to external CO2 concentration (c i/c a). During the dry phase, a midday depression of rates of CO2 assimilation was observed. The lowest leaf area index (F) was c. 2 in November–December, when the flood plain was dry, and again in May, when the rising floodwaters were submerging leaves faster than they were replaced. The maximum F of c. 5 was in August when the floodwaters were receding rapidly. Canopy light interception efficiency varied from 0.90 to 0.98. Calculated rates of canopy photosynthesis exceeded 18 mol C m-2 mo-1 throughout the period of flooding, with a peak of 37 mol C m-2 mo-1 in August, but declined to 13 mol C m-2 mo-1 in November during the dry phase. Estimated uptake of carbon by the canopy from the atmosphere, over 12 months, was 3.57 kg C m-2. This was insufficient to account for the 3.99 kg C m-2 of net primary production, measured simultaneously by destructive harvesting. It is postulated that this discrepancy might be accounted for by internal diffusion of CO2 from the CO2-rich waters and sediments via the roots and stems to the sites of assimilation in the leaves.  相似文献   

6.
The purpose of this study was to develop and validate a habitat-specific production simulation model to quantify annual benthic microalgal production in North Inlet estuary, South Carolina. Using hourly measurements of incident irradiance during 1990–1991 as the forcing function, the simulation model was used to obtain hourly estimates of areal benthic microalgal gross primary production in five habitat types. The model, which was validated using actual measurements of production, showed good (r2= 0.63, P < 0.001) agreement between observed and predicted production in the short Spartina alterniflora Loisel zone habitats showed the highest mean hourly production (61.1 mg C m?2 h?1) while intertidal mudflats had the maximum hourly rate (166.9 mg C m?2 h?1). Daily production was highly variable, primarily due to daily fluctuations in irradiance. Annual estimates of habitat-specific production were multiplied by the mates of habitat-specific production were multiplied by the known area of each habitat type to determine total microalgal production for the estuary (3.423 × 109 g C yr?1). Short Spartina zone habitats provided 45% of total microalgal annual production, followed by intertidal mudflats (22%), tall Spartina zones (18%), shallow subtidal (13%) and microalgal production exceeds phytoplankton and microalgal production but is less than Spartina production.  相似文献   

7.
Summary Net annual productivity and annual carbon budgets were determined for populations of Littorella uniflora var. americana and Isoetes macrospora in a mesotrophic and oligotrophic lake in northern Wisconsin, to assess the contribution of Crassulacean Acid Metabolism (CAM) to annual productivity of the species in their natural environment. Nocturnal carbon accumulation (CAM), daytime uptake of external CO2 via the C3 mechanism, and refixation of endogenously generated CO2 from daytime respiration were the sources of carbon income. CAM activity as diurnal acid rhythms reached maxima of 89 to 182 eq·g-1 leaf fresh weight for the various populations.Maximum rates of daytime 14C uptake ranged from 0.56 to 1.46 mg C·g-1 leaf dry wt.·h-1 for the study populations. Refixation of daytime respired CO2 averaged 37% for the four populations. Carbon loss was due largely to dark respiration, during the day and night. Nocturnal carbon accumulation, daytime CO2 uptake and 24-h dark respiration were of similar magnitude, indicating dark respiration was equivalent to 50% of gross photosynthesis.Net annual production was measured for each population by following leaf turnover. Turnover rates for the Littorella populations were 1.56 and 1.72·yr-1, and for the Isoetes populations, 0.85 and 1.00·yr-1. Measured net annual productivity and calculated net annual productivity (based on carbon exchange) agreed within an average of 12% for the four populations. While CAM activity was greater for the more productive population of each species, the results suggest that the contribution of CAM to annual productivity is greater for the less productive population of each species. CAM contributed 45 to 55% of the annual carbon gain for the study populations.  相似文献   

8.
We measured CO2 efflux from stems of two tropical wet forest trees, both found in the canopy, but with very different growth habits. The species were Simarouba amara, a fast-growing species associated with gaps in old-growth forest and abundant in secondary forest, and Minquartia guianensis, a slow-growing species tolerant of low-light conditions in old-growth forest. Per unit of bole surface, CO2 efflux averaged 1.24 mol m–2 s–1 for Simarouba and 0.83 mol m–2s–1 for Minquartia. CO2 efflux was highly correlated with annual wood production (r 2=0.65), but only weakly correlated with stem diameter (r 2=0.22). We also partitioned the CO2 efflux into the functional components of construction and maintenance respiration. Construction respiration was estimated from annual stem dry matter production and maintenance respiration by subtracting construction respiration from the instantaneous CO2 flux. Estimated maintenance respiration was linearly related to sapwood volume (39.6 mol m–3s–1 at 24.6° C, r 2=0.58), with no difference in the rate for the two species. Maintenance respiration per unit of sapwood volume for these tropical wet forest trees was roughly twice that of temperate conifers. A model combining construction and maintenance respiration estimated CO2 very well for these species (r 2=0.85). For our sample, maintenance respiration was 54% of the total CO2 efflux for Simarouba and 82% for Minquartia. For our sample, sapwood volume averaged 23% of stem volume when weighted by tree size, or 40% with no size weighting. Using these fractions, and a published estimate of aboveground dry-matter production, we estimate the annual cost of woody tissue respiration for primary forest at La Selva to be 220 or 350 g C m–2 year–1, depending on the assumed sapwood volume. These costs are estimated to be less than 13% of the gross production for the forest.  相似文献   

9.
The life history characteristics, population dynamics and production of Pontoporeia hoyi in Lake George, New York, were studied from May 1981 through October 1982. P. hoyi, in terms of both density and standing crop, is the most prevalent member of the deep water macrobenthos of Lake George. It reproduces in the winter, with young being released in the late winter-early spring. At the southernmost study site, young released in the spring grew to 6–7 mm in length and bred during their first winter. At the remaining sites, P. hoyi required two years to complete its life cycle. This difference in life history characteristics can be related to food availability and temperature differences. The open waters of the south end of Lake George are not only more productive but are also more closely associated with the littoral zone, providing a wealth of bacteria-rich detritus for benthic deposit feeders. The greater food availability in the south basin of Lake George is reflected in significantly larger brood sizes and smaller size at maturity for P. hoyi populations from the south end of the lake.The southernmost study site has significantly greater P. hoyi density and standing crop than all other sites. The cohort of the year dominated density and standing crop at the southern site while the cohort of the previous year dominated standing crop at the other sites. Peak abundance ranged from 600 · m–2 at the north site to 2 900 · m–2 at the south site. Cohort production ranged from 2g · m–2 at the north site to 15g · m–2 at the south site.  相似文献   

10.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

11.
Castro  Paula  Freitas  Helena 《Hydrobiologia》2000,428(1):171-177
Spartina maritima (Curtis) Fernald is a dominant species in the Mondego salt marsh on the western coast of Portugal, and it plays a significant role in estuarine productivity. In this work, leaf litter production dynamics and fungal importance for leaf decomposition processes in Spartina maritima were studied. Leaf fall was highly seasonal, being significantly higher during dry months. It ranged from 42 g m-2 in June to less than 6 g m-2 during the winter. Fungal biomass, measured as ergosterol content, did not differ significantly between standing-decaying leaves and naturally detached leaves. Fungal biomass increased in wet months, with a maximum of 614 g g-1 of ergosterol in January in standing-decaying leaves, and 1077 g g-1 in December, in naturally detached leaves, decreasing greatly in summer. Seasonal pattern of fungal colonization was similar in leaves placed in litterbags on the marsh-sediment surface. However, ergosterol concentrations associated with standing-decaying and naturally detached leaves were always much higher than in litterbagged leaves, suggesting that fungal activity was more important before leaf fall. Dry mass of litterbagged leaves declined rapidly after 1 month (about 50%), mostly due to leaching of soluble organic compounds. After 13 months, Spartina leaves had lost 88% of their original dry weight. The decomposition rate constant (k) for Spartina maritima leaves was 0.151 month-1.  相似文献   

12.
C. F. Mason 《Oecologia》1970,5(3):215-239
Summary The population densities of snails living in beech litter were studied form March 1968 to April 1969. Litter production over one year was measured and the role of snails in litter disappearance assessed.Snails were extracted from litter using a modified Vágvölgyi (1952) flotation method, extraction efficiencies being 84%. The mean annual population density of the twenty-one species of snail recorded on the main sampling site was estimated at 489/m2. Carychium tridentatum was the most numerous species, with a mean density of 200/m2. Acanthinula aculeata, Punctum pygmaeum and Vitrea contracta also had fairly high mean densities. The mean annual biomass was 699 mg dry wt./m2 or 278 mg ash-free dry wt./m2. Hygromia striolata and Oxychilus cellarius/alliarius were the most important species in terms of biomass on the main site. Within the limits of accuracy imposed by the sampling regime the population densities of four out of five of the species (C. tridentatum, A. aculeata, V. contracta, Retinella pura) studied remained unchanged throughout the year, whereas P. pygmaeum had a significantly higher autumn population. C. tridentatum populations were highly aggregated at all times of the year, most markedly so in June. Other species were aggregated at certain times of the year only. Samples taken from other sites showed total population densities of snails ranging from 185–1082 snails/m2.A total tree litter production of 652 g/m2/annum was recorded of which 584g/m2/annum was of beech material. 72% fell in the October–December period. 58% of the beech litter-fall was leaves, 5.2% bud-scales, 27% fruits and 10% twigs and bark. Summation of appropriate field layer peak standing crops amounted to 23.3 g/m2. This was considered as potential litter and was equivalent to 3.4% of the total litter input. The litter standing on the woodland floor in Septermber 1968 was 2,700 g/m2, hence, assuming a steady state, litter turnover time was estimated as 4.5 years.It was calculated that the total snail population ingested 0.35–0.43% of the annual litter input, of which 49% was assimilated. The role of the individual species is examined in relation to concepts of key species in ecosystem functioning. The possible role of slugs in decomposition processes is also discussed.  相似文献   

13.
Metabolism of a subtropical Brazilian lagoon   总被引:1,自引:1,他引:0  
Total community, planktonic and benthic metabolisms were measured by using the carbon dioxide production and consumption, the diurnal curve' method and the in situ bottle incubation technique over an annual cycle in two sublagoons of the Saquarema Lagoon, Brazil. Metabolic rates of the phytoplankton-based lagoon were characterized by considerable daytime and daily variability in production and respiration, by a seasonal shift between net autotrophy and heterotrophy and by an annual balance of production (P = 105 ± 65 mmoles/m2/dayn = 25) and respiration (R = 102 ± 50 mmoles/m2/dayn = 25). Total community metabolism was similar throughout the lagoon, but phytoplankton assimilation rates and benthic respiration showed spatial differences. Bottle incubations compared to total community free water respiration suggested that the pelagic community was 2–5 times more active than the benthos  相似文献   

14.
The ecology of Lake Nakuru   总被引:3,自引:0,他引:3  
E. Vareschi  J. Jacobs 《Oecologia》1985,65(3):412-424
Summary The major pathways of energy flow in Lake Nakuru (East Africa) are presented. The trophic structure of this equatorial alkaline-saline lake shows no predictable long term continuity. During the five years of this study it had a bloom of Spirulina platensis that persisted at least two years, it had periods with low algal densities and in addition it had various transitional phases with dramatic fluctuations of species composition and density.The Spirulina platensis bloom is characterized by a rich and almost unialgal bloom of the cyanophyte Spirulina platensis minor, with a mean biomass of 3,500 kJ m-3 (20 kJ 1 g dry weight). Net photosynthetic rates were very high at depths with optimal light conditions (230 kJ m-3 h-1), but algal self-shading made integrated rates modest (45 kJ m-3 24 h-1) relative to the high biomass. Of the eight primary consumers only five species contributed significantly to the consumer biomass of 220 kJ m-3: the flamingo Phoeniconaias minor, the cichlid fish Sarotherodon alcalicus grahami, the copepod Lovenula africana, the dipteran larva Leptochironomus deribae, and the rotifer Brachionus dimidiatus. Consumption rates were 50% of net photosynthetic rates, production rates 10%. Secondary consumers (90% being the pelican Pelecanus onocrotalus and the Greater Flamingo Phoenicopterus ruber) had a biomass of about 6.8 kJ m-3. Pelicans consumed almost the whole fish production (7.5 metric tons wet weight/day).At low algal densities the lake had a more diverse algal population but a reduced mean biomass of 1,500 kJ m-3 and mean net photosynthetic rates of 12 kJ m-3 24 h-1. Primary consumer species diversity and biomass were also reduced. Consumption rates sometimes exceeded primary production rates. Rotifers probably contributed 50% to total consumption and 75% to total secondary production but the estimates of their role is speculative as the relative contributions of algae, bacteria and detritus to rotifer consumption are not known. Transitional phases are characterized by rapidly changing abiotic and biotic conditions with algal breakdowns and sudden population peaks at all levels. Rotifers dominated secondary consumers, they contributed 25% to the total biomass of 380 kJ m-3, 90% to the total consumption rate of 290 kJ m-3d-1 and 95% to the total production of 41 kJ m-3d-1.The discussion focusses on problems of measuring primary production in alkaline-saline lakes, and the control of producer and consumer densities. The difficulty in assessing the importance of bacteria and rotifers is emphasized. Also questions of ecological stability and efficiency are addressed. Finally, some recommendations for conservational policy are included.  相似文献   

15.
Summary The growth responses of seedlings of Amphipterygium adstringens, Caesalpinia eriostachys, and C. platyloba, species associated with undisturbed parts of the tropical deciduous forest in México, and Apoplanesia paniculata and Heliocarpus pallidus, two gap-requiring pioneer species, were determined under contrasting light conditions in a growth chamber experiment. The high (400 mol m–2 s–1) and low (80 mol m–2 s–1) light treatments correspond to the light available in a medium size gap and underneath the vegetation canopy in the deciduous forest during the rainy season, respectively. Following four destructive harvests the biomass production, relative growth rate, root/shoot ratio, specific leaf area, net assimilation rate, leaf area ratio and light dependency were determined for all species. In the high light treatment all species achieved higher relative growth rates and net assimilation rates than when growing at low light intensity. However, the two pioneer species showed the highest light dependency and were the species more affected by the low light treatment in biomass production. The two Caesalpinia species showed similar growth responses, but C. platyloba was the most shade tolerant species. Plastic adjustments in terms of the specific leaf area were more evident in the two pioneer species.  相似文献   

16.
A comprehensive canopy productivity model was built to study the productivity of a primary salt marsh grass, Spartina alterniflora. in Georgia, USA The canopy model was unique in employing plant demographic data to reconstruct canopy profiles and dynamics, which showed many growth processes that are otherwise difficult to discern in the field By linking canopy dynamics and leaf photosynthesis, the net total primary productivity of S alterniflora m a Georgia salt marsh was estimated to be 1421, 749, and 1441 g C m-2 yr-1 for the tall, short, and N-fertilized short populations respectively These estimates are reasonable in terms of the physiological capacity of S alterniflora and well below the range of 3000–4200 g C m-2 yr-1 as reported by some recent harvest studies Our detailed analysis suggested the net total productivity of S alterniflora might be greatly overestimated in the past This is mainly because of 1) failure to consider the translocation of photosynthate between aboveground and belowground parts, and 2) possible overestimates of belowground production We estimated the net belowground production to be 872, 397, and 762 g C m-2 yr-1 for the tall, short, and N-fertilized populations respectively After receiving nitrogen fertilizer, the net leaf carbon fixation in the short population increased from 1489 to 2487 g C m-2 yr-1, and our simulation showed the contribution of elevated leaf N to this increase was small, 21%, compared with that of increased leaf area, 79% Both tall and short populations allocated ca 48-49% of their annual gross leaf carbon fixation to belowground structures Nitrogen enrichment caused more allocation to aboveground parts in the short population, mainly for increasing leaf area The canopy model assumed that there was no leaf photosynthesis under tidal submergence, but if this assumption was relaxed, then leaf carbon fixation might increase 7–13% for different S alterniflora populations Although this research focused only on a salt marsh species, our general approaches, especially the coupling of leaf physiology with the reconstructed canopies, should be applicable to the study of production processes of many other plant populations  相似文献   

17.
Broekhuizen  N.  Parkyn  S.  Miller  D.  Rose  R. 《Hydrobiologia》2002,477(1-3):181-188
Much of the variation in individual growth rates can be attributed to differences in individual feeding rates. Therefore, in order to build predictive models of individual, or population growth, the factors influencing an individual's feeding rate must be described. An important determinant of the feeding rate is the relationship between the local abundance of food and the individual's ingestion rate – otherwise known as the functional response. We determined functional responses for two species of invertebrate grazers: the snail Potamopyrgus antipodarum and the mayfly Deleatidium sp., by measuring their assimilation rate with increasing densities of radiolabelled periphyton. The assimilation rates were consistent with the Holling Type II or Michelis Menten functional response curve. The parameters of the functional response yielded estimates of the search area and handling time for the stream invertebrates. Our functional response data indicate that the half-saturation food density for P. antipodarum and Deleatidium sp. were 980 mg and 3200 mg AFDM m–2, respectively, suggesting that Deleatidium growth may be subject to food limitation more often than is P. antipodarum – despite the lower assimilation efficiency of the latter species.  相似文献   

18.
The structure of cyanobacterial phycobilisomes: a model   总被引:7,自引:0,他引:7  
Phycobilisomes, supramolecular complexes of water-soluble accessory pigments, serve as the major light-harvesting antennae in cyanobacteria and red algae. Regular arrays of these organelles are found on the surface of the thylakoid membranes of these organisms. In the present study, the hemi-discoidal phycobilisomes of several species of cyanobacteria were examined in thin sections of cells and by negative staining after isolation and fixation. Their fundamental structures were found to be the same. Isolated phycobilisomes possessed a triangular core assembled from three stacks of disc-shaped subunits. Each stack contained two discs which were 12 nm in diameter and 6–7 nm thick. Each of these discs was probably subdivided into halves 3–3.5 nm thick. Radiating from each of two sides of the triangular core were three rods 12 nm in diameter. Each rod consisted of stacks of 2 to 6 disc-shaped subunits 6 nm thick. These discs were subdivided into halves 3 nm thick.The average number of discs of 6 nm thickness forming the peripheral rods varied among the strains studied. For certain chromatically adapting strains, the average rod length was dependent upon the wavelength of light to which cells were exposed during growth. Analyses of phycobilisomes by spectroscopic techniques, polyacrylamide gel electrophoresis, and electron microscopy were compared. These analyses suggested that the triangular core was composed of allophycocyanin and that the peripheral rods contained phycocyanin and phycoerythrin (when present). A detailed model of the hemi-discoidal phycobilisome is proposed. This model can account for many aspects of phycobiliprotein assembly and energy transfer.Abbreviations PBS phycobilisome(s) - PBP phycobiliprotein(s) - AP allophycocyanin - PC phycocyanin - PE phycoerythrin - PEC phycoerythrocyanin - AP-B allophycocyanin B - C- cyanobacterial - R- rhodophytan - B- Bangiophycean - SDS sodium dodecyl sulfate - LPP Lyngbya-Plectonema-Phormidium group - Na-KPO4 buffers NaH2PO4 titrated with a solution of KH2PO4 of equivalent molarity to a given pH  相似文献   

19.
We analyzed the long-term dynamics of aboveground biomass ofLeymus chinense steppe in relation to interannual variation of precipitation and temperature during 1980–1989 at levels of community, growth form and species in the Xilin river basin, Inner Mongolia Autonomous Region, China. Annual aboveground net primary production (ANPP) varied from 154.00 g m-2 yr-1 in 1980 to 318.59 g m-2 yr-1 in 1988, with a mean of 248.63 g m-2 yr-1 and the coefficient of variation of 25%. ANPP was not significantly correlated to annual precipitation and total precipitation during April–September atp0.05 level, but precipitation in May and August accounted for 69% of interannual variation of ANPP. The means of rain use efficiency and water use efficiency ofL. chinense steppe were 8.1 kg DM ha-1 mm-1 yr-1 and 0.89 mg DM g-1 H2O respectively. Aboveground biomass of various growth forms and species had different response patterns to interannual variation of precipitation and temperature. Monthly and seasonal distribution of precipitation and temperature were the key controls of aboveground biomass of species.  相似文献   

20.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号