首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of nanoparticle libraries for biosensing   总被引:6,自引:0,他引:6  
Magnetic and magnetofluorescent nanoparticles have become important materials for biological applications especially for sensing, separation, and imaging. To achieve target specificity, these nanomaterials are often covalently modified with binding proteins such as antibodies or proteins. Here we report on the creation of nanoparticle libraries that achieve specificity through multivalent modification with small molecules. We explore different synthetic routes to attach small molecules with anhydride, amine, hydroxyl carboxyl, thiol, and epoxy handles. We show that the derived nanomaterials have unique biological functions, possess different behaviors in cell screens, and can be used as substrates for biological screens.  相似文献   

2.
Small molecules are widely used for the modulation of the molecular basis of diseases. This makes them the perfect tool for discovering and developing new therapeutics. In this work, we have established a library of small molecules in house and characterized its molecular and druglike properties. We have shown that most small molecules have molecular weights less than 450. They have pharmaceutically relevant cLogP, cLogS, and druglikeness value distributions. In addition, Meinox’s small molecule library contained small molecules with polar surface areas that are less than 60 square angstroms, suggesting their potent ability to cross the blood-brain barrier. Meinox’s small molecule library was also tested in vitro for pathologically distinct forms of cancer, including pancreatic adenocarcinoma PANC1, breast carcinoma MCF7, and lymphoblastic carcinoma RS4-11 cell lines. Analysis of this library at a dose of 1 μM allowed the discovery of potent, specific or broadly active anticancer compounds against pathologically distinct cancers. This study shows that in vitro analysis of different cancers or other phenotypic assays with Meinox small molecule library may generate novel and potent bioassay-specific compounds.  相似文献   

3.

Background  

Organic nanomaterials having specific biological properties play important roles in in vivo delivery and clearance from the live cells. To develop orally deliverable nanomaterials for different biological applications, we have synthesized several fluorescently labelled, self-assembled PABA nanoparticles using possible acid side chain combinations and tested against insect and human cell lines and in vivo animal model. Flurophores attached to nanostructures help in rapid in vivo screening and tracking through complex tissues. The sub-cellular internalization mechanism of the conjugates was determined. A set of physio-chemical parameters of engineered nanoskeletons were also defined that is critical for preferred uptake in multiple organs of live Drosophila.  相似文献   

4.
Antibodies, with their high affinity and specificity, are widely utilized in the field of protein engineering, medicinal chemistry, and nanotechnology applications, and our recent studies have demonstrated the recognition and binding of antibody for the surface on inorganic material. In this study, we generated a high-affinity gold-binding antibody fragment by a combination of peptide-grafting and phage-display techniques and showed the availability of the material-binding fragment for one-pot functionalization of nanoparticles as interface molecules. After a gold-binding peptide sequence was grafted into one of the complementarity determining regions of a single variable domain of a heavy-chain camel antibody, a combinatorial library approach raised by 20 times the affinity of the peptide-grafted fragment. The high-affinity gold-binding fragment (E32) spontaneously adsorbed on gold nanoparticles, and consequently the nanoparticles formed a stable dispersion in a high-ionic-strength solution. Multivalent and bispecific antibodies constructed on the E32 platform by means of fusion technology functionalized gold nanoparticles in one pot, and these functionalized nanoparticles could be used to obtain surface plasmon resonance scattering images of cancer cells and to spontaneously link two different nanomaterials. Here, we propose the bispecific antibodies as convenient interface molecules in the nanosized world.  相似文献   

5.
Aptamers are nucleic acid oligomers with distinct conformational shapes that allow them to bind targets with high affinity and specificity. Aptamers are selected from a random oligonucleotide library by their capability to bind a certain molecular target. A variety of targets ranging from small molecules like amino acids to complex targets and whole cells have been used to select aptamers. These characteristics and the ability to create specific aptamers against virtually any cell type in a process termed “systematic evolution by exponential enrichment” make them interesting tools for flow cytometry. In this contribution, we review the application of aptamers as probes for flow cytometry, especially cell-phenotyping and detection of various cancer cell lines and virus-infected cells and pathogens. We also discuss the potential of aptamers combined with nanoparticles such as quantum dots for the generation of new multivalent detector molecules with enhanced affinity and sensitivity. With regard to recent advancements in aptamer selection and the decreasing costs for oligonucleotide synthesis, aptamers may rise as potent competitors for antibodies as molecular probes in flow cytometry.  相似文献   

6.
7.
纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料是纳米技术发展的重要基础,它具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。对几类常见的纳米材料包括纳米金、量子点、磁性纳米粒子、碳纳米管和硅纳米线在蛋白质、DNA、金属离子以及生物相关分子检测方面的应用进行综述。  相似文献   

8.

Background

Many in vitro studies have revealed that the interference of dye molecules in traditional nanoparticle cytotoxicity assays results in controversial conclusions. The aim of this study is to establish an extensive and systematic method for evaluating biological effects of gold nanoparticles in mammalian cell lines.

Methods

We establish the cell-impedance measurement system, a label-free, real-time cell monitoring platform that measures electrical impedance, displaying results as cell index values, in a variety of mammalian cell lines. Cytotoxic effects of gold nanoparticles are also evaluated with traditional in vitro assays.

Results

Among the six cell lines, gold nanoparticles induce a dose-dependent suppression of cell growth with different levels of severity and the suppressive effect of gold nanoparticles was indirectly associated with their sizes and cellular uptake. Mechanistic studies revealed that the action of gold nanoparticles is mediated by apoptosis induction or cell cycle delay, depending on cell type and cellular context. Although redox signaling is often linked to the toxicity of nanoparticles, in this study, we found that gold nanoparticle-mediated reactive oxygen species generation was not sustained to notably modulate proteins involved in antioxidative defense system.

Conclusion

The cell-impedance measurement system, a dye-free, real-time screening platform, provides a reliable analysis for monitoring gold nanoparticle cytotoxicity in a variety of mammalian cell lines. Furthermore, gold nanoparticles induce cellular signaling and several sets of gene expression to modulate cellular physical processes.

General significance

The systematic approach, such as cell-impedance measurement, analyzing the toxicology of nanomaterials offers convincing evidence of the cytotoxicity of gold nanomaterials.  相似文献   

9.
Santra S  Perez JM 《Biomacromolecules》2011,12(11):3917-3927
The development of functional amino acid-based polymeric materials is emerging as a platform to create biodegradable and nontoxic nanomaterials for medical and biotechnology applications. In particular, facile synthetic routes for these polymers and their corresponding polymeric nanomaterials would have a positive impact in the development of novel biomaterials and nanoparticles. However, progress has been hampered by the need to use complex protection-deprotection methods and toxic phase transfer catalysts. In this study, we report a facile, single-step approach for the synthesis of an N-alkylated amino acid as an AB-type functional monomer to generate a novel pseudo-poly(amino acid), without using the laborious multistep, protection-deprotection methods. This synthetic strategy is reproducible, easy to scale up, and does not produce toxic byproducts. In addition, the synthesized amino acid-based polymer is different from conventional linear polymers as the butyl pendants enhance its solubility in common organic solvents and facilitate the creation of hydrophobic nanocavities for the effective encapsulation of hydrophobic cargos upon nanoparticle formation. Within the nanoparticles, we have encapsulated a hydrophobic DiI dye and a therapeutic drug, Taxol. In addition, we have conjugated folic acid as a folate receptor-targeting ligand for the targeted delivery of the nanoparticles to cancer cells expressing the folate receptor. Cell cytotoxicity studies confirm the low toxicity of the polymeric nanoparticles, and drug-release experiments with the Taxol-encapsulated nanoparticles only exhibit cytotoxicity upon internalization into cancer cells expressing the folate receptor. Taken together, these results suggested that our synthetic strategy can be useful for the one-step synthesis of amino acid-based small molecules, biopolymers, and theranostic polymeric nanoagents for the targeted detection and treatment of cancer.  相似文献   

10.
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.  相似文献   

11.
Many researches have shown that anionic clays can be used as delivery carriers for drug or gene molecules due to their efficient cellular uptake in vitro, and enhanced permeability and retention effect in vivo. It is, therefore, highly required to establish a guideline on their potential toxicity for practical applications. The toxicity of anionic clay, layered metal hydroxide nanoparticle, was evaluated in two human lung epithelial cells, carcinoma A549 cells and normal L-132 cells, and compared with that in other human cancer cell lines such as cervical adenocarcinoma cells (HeLa) and osteosarcoma cells (HOS). The present nanoparticles showed little cytotoxic effects on the proliferation and viability of four cell lines tested at the concentrations used (<250 μg/ml) within 48 h. However, exposing cancer cells to high concentrations (250-500 μg/ml) for 72 h resulted in an inflammatory response with oxidative stress and membrane damage, which varied with the cell type (A549 > HOS > HeLa). On the other hand, the toxicity mechanism seems to be different from that of other inorganic nanoparticles frequently studied for biological and medicinal applications such as iron oxide, silica, and single walled carbon nanotubes. Iron oxide caused cell death associated with membrane damage, while single walled carbon nanotube induced oxidative stress followed by apoptosis. Silica triggered an inflammation response without causing considerable cell death for both cancer cells and normal cells, whereas layered metal hydroxide nanoparticle did not show any cytotoxic effects on normal L-132 cells in terms of inflammation response, oxidative stress, and membrane damage at the concentration of less than 250 μg/ml. It is , therefore, highly expected that the present nanoparticle can be used as a efficient vehicle for drug delivery and cancer cell targeting as well.  相似文献   

12.
In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1), an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.  相似文献   

13.

Background

It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications. However, before these novel materials can be safely applied in a clinical setting, their biocompatibility, biodistribution and biodegradation needs to be carefully assessed.

Scope of Review

There are a number of different classes of nanoparticles that hold promise for biomedical purposes. Here, we will focus on some of the most commonly studied nanomaterials: iron oxide nanoparticles, dendrimers, mesoporous silica particles, gold nanoparticles, and carbon nanotubes.

Major Conclusions

The mechanism of cellular uptake of nanoparticles and the biodistribution depend on the physico-chemical properties of the particles and in particular on their surface characteristics. Moreover, as particles are mainly recognized and engulfed by immune cells special attention should be paid to nano–immuno interactions. It is also important to use primary cells for testing of the biocompatibility of nanoparticles, as they are closer to the in vivo situation when compared to transformed cell lines.

General Significance

Understanding the unique characteristics of engineered nanomaterials and their interactions with biological systems is key to the safe implementation of these materials in novel biomedical diagnostics and therapeutics. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

14.
Gene cloning of immunogenic antigens overexpressed in pancreatic cancer   总被引:8,自引:0,他引:8  
The serological analysis of recombinant cDNA expression libraries (SEREX) by utilizing a library derived from a human pancreatic adenocarcinoma cell line and IgG antibodies from an allogeneic patient serum led to the identification of 18 genes: 13 of these were known genes, and 5 were unknown genes. In Northern and RT-PCR analyses, we found that the expression of mRNA of 14 genes was elevated in pancreatic cancer cell lines compared with the levels in normal pancreatic tissues. In addition, the expression of mRNA of hsp105 in colon cancer was greater than that in normal colon tissue. Immunohistochemical analysis using anti-hsp105 antibody revealed that an increased expression of hsp105 is a characteristic feature of pancreatic ductal and colon adenocarcinoma. Furthermore, hsp105 immunoreactivity in some cases of gastric, esophageal, and hepatocellular carcinoma was much stronger than that in normal corresponding tissues. These molecules identified may provide good diagnostic markers for cancer cells.  相似文献   

15.
S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.  相似文献   

16.
Gold nanoparticles have shown promising biological applications due to their unique properties. Understanding the interaction mechanisms between nanomaterials and biological cells is important for the control and manipulation of these interactions for biomedical applications. In the present study, we investigated the effects of gold nanoparticles on the differentiation of osteoblastic MC3T3-E1 cells and antimycin A-induced mitochondrial dysfunction. The results showed that gold nanoparticles (5, 10, and 20 nm) caused a significant elevation of cell growth, alkaline phosphatase activity, collagen synthesis, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with gold nanoparticles prior to antimycin A exposure significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, ATP loss, cytochrome c release, cardiolipin peroxidation, and reactive oxygen species generation. Taken together, our study indicated that gold nanoparticles may improve the differentiation and have protective effects on mitochondrial dysfunction of osteoblastic cells.  相似文献   

17.
18.
Nanotechnology is set to impact a vast range of fields, including computer science, materials technology, engineering/manufacturing and medicine. As nanotechnology grows so does exposure to nanostructured materials, thus investigation of the effects of nanomaterials on biological systems is paramount. Computational techniques can allow investigation of these systems at the nanoscale, providing insight into otherwise unexaminable properties, related to both the intentional and unintentional effects of nanomaterials. Herein, we review the current literature involving computational modelling of nanoparticles and biological systems. This literature has highlighted the common modes in which nanostructured materials interact with biological molecules such as membranes, peptides/proteins and DNA. Hydrophobic interactions are the most favoured, with π-stacking of the aromatic side-chains common when binding to a carbonaceous nanoparticle or surface. van der Waals forces are found to dominate in the insertion process of DNA molecules into carbon nanotubes. Generally, nanoparticles have been observed to disrupt the tertiary structure of proteins due to the curvature and atomic arrangement of the particle surface. Many hydrophobic nanoparticles are found to be able to transverse a lipid membrane, with some nanoparticles even causing mechanical damage to the membrane, thus potentially leading to cytotoxic effects. Current computational techniques have revealed how some nanoparticles interact with biological systems. However, further research is required to determine both useful applications and possible cytotoxic effects that nanoparticles may have on DNA, protein and membrane structure and function within biosystems.  相似文献   

19.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high rate of metastasis. Recent studies have indicated that the Notch signalling pathway is important in PDAC initiation and maintenance, although the specific cell biological roles of the pathway remain to be established. Here we sought to examine this question in established pancreatic cancer cell lines using the γ-secretase inhibitor IX (GSI IX) to inactivate Notch. Based on the known roles of Notch in development and stem cell biology, we focused on effects on epithelial mesenchymal transition (EMT) and on pancreatic tumor initiating CD44+/EpCAM+ cells. We analyzed the effect of the GSI IX on growth and epithelial plasticity of human pancreatic cancer cell lines, and on the tumorigenicity of pancreatic tumor initiating CD44+/EpCAM+ cells. Notably, apoptosis was induced after GSI IX treatment and EMT markers were selectively targeted. Furthermore, under GSI IX treatment, decline in the growth of pancreatic tumor initiating CD44+/EpCAM+ cells was observed in vitro and in a xenograft mouse model. This study demonstrates a central role of Notch signalling pathway in pancreatic cancer pathogenesis and identifies an effective approach to inhibit selectively EMT and suppress tumorigenesis by eliminating pancreatic tumor initiating CD44+/EpCAM+ cells.  相似文献   

20.
抗大肠癌噬菌体单链抗体的筛选及初步鉴定   总被引:6,自引:0,他引:6  
 应用 3种方法 (肿瘤细胞膜表面和胞内、裸鼠体内和组织切片 ) ,从全人源化的抗大肠癌噬菌体初级抗体库中筛选肿瘤特异性的噬菌体单链抗体 (Sc Fv) .在肿瘤细胞经过 3轮亲和选择 ,回收结合胞膜和内化进入胞内的噬菌体 ,得到抗肿瘤噬菌体单链抗体的富集倍数为 430倍 ;荷瘤裸鼠体内注入初级抗体库后 ,在不同时刻点处死裸鼠 ,回收肿瘤组织内的噬菌体 ,其回收率在 2 4 h时最高 ;初级抗体库与大肠癌组织切片亲和选择后 ,从冰冻组织切片上比从石蜡组织切片上回收得到的噬菌体高出约 1 .6倍 .从上述方法挑选单克隆 ,经 ELISA筛选抗大肠癌阳性噬菌体克隆株 ,分离得到 5个对大肠癌细胞反应较好的单克隆噬菌体单链抗体 .进一步用细胞 ELISA检测对各种肿瘤细胞的特异性反应 ,其中 4个对大肠癌细胞有很好的特异性 ,1个克隆对所有肿瘤细胞均有反应 .因此 ,3种方法用于筛选抗大肠癌噬菌体初级抗体库是有效的 ,具有推广和应用价值 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号