首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Minichromosomes possess functional centromeres and telomeres and thus should be stably inherited. They offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Segregating independently of host chromosomes, they provide a platform for accelerating plant breeding. Following a top‐down approach, we truncated endogenous chromosomes in Arabidopsis thaliana by Agrobacterium‐mediated transfer of T‐DNA constructs containing telomere sequences. Blocks of A. thaliana telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into the natural tetraploid A. thaliana accession Wa‐1, chromosome truncation by T‐DNA‐induced de novo formation of telomeres could be confirmed by DNA gel blot analysis, PCR (polymerase chain reaction), and fluorescence in situ hybridisation. The addition of new telomere repeats in this process could start alternatively from within the T‐DNA‐derived telomere repeats or from adjacent sequences close to the right border of the T‐DNA. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.  相似文献   

2.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

3.
T. Tsuchiya 《Chromosoma》1969,26(2):130-139
In the progeny of a trisomic type for chromosome 6, Purple, a 16-chromosome type was obtained, which had a pair of new metacentric chromosome 6 in excess. The new metacentric chromosome 6 was shorter than any of the 14 chromosomes of normal barley complement and showed a heteropycnotic nature at late prophase in somatic mitosis. At metaphase I in the plants with 14+one metacentric chromosome 6 (2n=15) the chromosome configuration was exclusively 7II+1I indicating that the extra metacentric chromosome 6 could not associate with the normal chromosome 6. At diakinesis and metaphase I in the new 16-chromosome plants most of the sporocytes showed 8IIor 7II+2I. Neither tetravalents nor trivalents were observed at meiosis. The chromosome behaviour at anaphase I and later stages of meiosis was regular in general, resulted in a fairly high pollen fertility of about 61 per cent. Seed fertility however, was very low. The transmission rate of the new metacentric chromosome 6 through the pollen was extremely low in 16-chromosome plants. Possible origin of new basic number and B-chromosome in diploid level through trisomic condition was suggested (Summary see p. 138).Contribution No. 141 of the Department of Plant Science, University of Manitoba.  相似文献   

4.
Karyotype analyses based on staining by acetocarmine followed by Giemsa N-banding of somatic metaphase chromosomes of Hordeum vulgare L. were carried out on 61 reciprocal translocations induced by X-irradiation. By means of computer-based karyotype analyses all of the 122 breakpoints could be localized to defined sites or segments distributed over the seven barley chromosomes. The pre-definition of translocations with respect to their rearranged chromosome arms from other studies rendered it possible to define the break positions even in translocations having exchanged segments equal in size and the breakpoints located distally to any Giemsa band or other cytological marker. The breakpoints were found to be non-randomly spaced along the chromosomes and their arms. All breaks but one occurred in interband regions of the chromosomes, and none of the breaks was located directly within a centromere. However, short and long chromosome arms recombined at random. An improved tester set of translocations depicting the known break positions of most distal location is presented.  相似文献   

5.
FUdR 10?4 M was applied together with [3H] TdR on the growing barley embryos cultivated in the nutrient solution. Samples were fixed 1–4 h after the onset of the treatment and microautoradiograms were prepared. All the mitoses were unlabelled, while more than 150 autoradiographic grains were found above labelled interphase nuclei; no cells that terminated S phase at the onset of the treatment passed through entire G2 and reached mitosis during the 4 h duration of the treatment. Chromosomal fragments in anaphases appeared the first hour after the onset of the treatment. Their frequency increased from the first to the second hour and remained almost constant from the second to the fourth hour. FUdR induces chromosomal fragments in barley root meristems also in G2 phase of the mitotic cycle.  相似文献   

6.
Summary Intergeneric hybridization between four common wheat cultivars, Triticum aestivum L. cultivars Chinese Spring, Norin 12, Norin 61, and Shinchunaga, and cultivated barley, Hordeum vulgare L. cultivars Betzes, Nyugoruden, Harunanijou, and Kinai 5 were carried out in a greenhouse under 15 – 20 °C and long-day (15 h) photoperiod conditions. Two days prior to pollination, a 100 mg/1 2,4-D solution was injected into wheat stems. Among wheat cultivars, Norin 12, Norin 61, and Shinchunaga showed higher crossabilities than that of Chinese Spring, suggesting the presence of crossability gene(s) other than the kr system of Chinese Spring. Variation was also found among the barley cultivars as male parents. Betzes barley showed the highest crossability with wheat. Thus, the cross Norin 12×Betzes showed the highest crossability (8.25%), followed by Norin 61 ×Betzes (6.04%), Shinchunaga×Betzes (5.00%), and Shinchunaga×Kinai 5 (5.00%). The embryos were rescued by culture at 15–20 days after pollination. Seventyfour plants were obtained from 82 embryos. The morphology of the hybrid plants resembled that of wheat parents. Among 60 seedlings observed, 28 had 28 chromosomes, 8 had 21, 23 had aneuploid numbers of chromosomes (22–27), and 1 had 29 chromosomes. About half of the aneuploid hybrids showed mosaicism for chromosome number. By analyzing five isozyme markers of barley chromosomes, the chromosome constitutions of the aneuploid hybrids were determined. Barley chromosomes 1 and 5 were found to be preferentially eliminated in the hybrids, while chromosomes 2 and 4 were eliminated infrequently. The conditions and genetic factors for high crossability and the tendency of barley chromosome elimination are discussed.  相似文献   

7.
FISH landmarks for barley chromosomes (Hordeum vulgare L.).   总被引:4,自引:0,他引:4  
Barley metaphase chromosomes (2n = 14) can be identified by fluorescence in situ hybridization (FISH) and digital imaging microscopy using heterologous 18S rDNA and 5S rDNA probe sequences. When these sequences are used together, FISH landmark signals were seen so that all 7 chromosomes were uniquely identified and unambiguously oriented. The chromosomal location of the landmark signals was determined by FISH to a barley trisomic series using the 18S and 5S probes labeled with different fluorophores. The utility of these FISH landmarks for barley physical mapping was also demonstrated when an Amy-2 cDNA clone and a BAC clone were hybridized with the FISH landmark probes.  相似文献   

8.
Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.  相似文献   

9.
Chromosome number in the cells of the first division cycle in the root tip of Hordeum vulgare (2n=14) was apparently reduced from 2n to n by the chloramphenicol (CAP) treatments in early S, S late and/or early G 2 stages. Morphological observations and measurements of relative DNA content per cell indicated that such reduction was due to tight alignment of chromosomes in pairs. —It was supposed that homologous chromosomes are close together in the interphase nucleus, and their successive association up to mitotic prometaphase was induced by the CAP treatment.  相似文献   

10.
11.
Two structurally reconstructed karyotypes of Hordeum vulgare which, due to appropriate reciprocal translocations, contain three chromosome pairs with nucleolus organizing activity (chromosomes 57, 6 and 77 in translocation line T 21, chromosomes 36, 63, and 7 in translocation line T 627) have been studied with respect to the position and function of rDNA as inferrred from the pattern of nucleolus formation. The results obtained reveal quantitative relationships between the size of the secondary constriction (the amount of rRNA cistrons) and the number and size of nucleoli being formed. Quantitative and qualitative aspects of rDNA location and expression are being discussed.  相似文献   

12.
Summary Heterochromatin distribution in barley chromosomes was investigated by analyzing the C- and N-banding patterns of four cultivars. Enzymatic maceration and air drying were employed for the preparation of the chromosome slides. Although the two banding patterns were generally similar to each other, a clear difference was observed between them at the centromeric sites on all chromosomes. Every centromeric site consisted of N-banding positive and C-banding negative (N+ C) heterochromatin in every cultivar examined. An intervarietal polymorphism of heterochromatin distribution was confirmed in each of the banding techniques. The appearance frequencies of some bands were different between the two banding techniques and among the cultivars. The heterochromatic differentiation observed is discussed with respect to cause.  相似文献   

13.
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere‐mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site‐specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.  相似文献   

14.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S-28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barley Hordeum vulgare L. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 75% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

15.
Excised barley embryos were treated with methyl methanesulphonate and cultivatedin vitro in water or in a nutrient medium. The alkylating compound induced a high frequency of chromosome aberrations observed at anaphase and metaphase and depressed the mitotic division in the root-tips of excised embryos.  相似文献   

16.
Akio Kusanagi 《Chromosoma》1966,20(1):125-132
The rate of DNA replication, as judged by H3-thymidine incorporation, at the specific time of the S-period in chromosomes of barley (Hakata No. 2) is studied by means of autoradiography.In the barley chromosomes, two different DNA units with respect to replication-time are distinguishable. The early replicating DNA is replicated at least within 1 hour ab init. of the S-period, and the late replicating DNA within 1/2 to 1 hour before the end of the S-period. The replication scarcely occurs in the middle of the S-period. These evidences suggest that the replication of chromosomal DNA in the present material does, therefore, not proceed in a continuous time sequence. Topographically, the early replicating DNA is almost confined exclusively to the distal regions of the chromosomes 1 and 5, and this situation seems applicable to other chromosomes as well, whereas the late replicating DNA is close to the centromere on its both sides. Hence, the replication of chromosomal DNA does not proceed uniformly in a longitudinal sequence along the chromosomes. The interrelationships among chromosome structure in its cytological expression, replication -pattern and -time of chromosomes, and regulating mechanisms of DNA replication are discussed.  相似文献   

17.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

18.
The B-hordein gene family consists of at least 13 genes that appear to be clustered in two regions on the barley chromosome 1H (5). Using fluorescence in situ hybridization techniques, we have localized the B-hordein locus (Hor2) to the distal end of the short arm of chromosome 1H (5), corresponding to the genetically determined position, 91% distal on the short arm. This result is based on appropriate barley lines (i.e. the two cultivars Igri and Betzes, the telotrisomic and ditelotetrasomic lines 1HS and the translocation line T21), on two experimental approaches and on a signal frequency of between 20% and 60% on metaphase chromosomes.  相似文献   

19.
Summary Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both endogenous -amylase 2 and subtilisin (ASI) on chromosome 2, two chymotrypsin/subtilisin inhibitors (CI-1 and CI-2) on chromosome 5 (long arm) and the major trypsin inhibitor (TI-1) on chromosome 3.  相似文献   

20.
Summary Seven complete chromosomes and nine telocentric chromosomes in telotrisomics of barley (Hordeum vulgare L.) were identified and designated by an improved Giemsa N-banding technique. Karyotype analysis and Giemsa N-banding patterns of complete and telocentric chromosomes at somatic late prophase, prometaphase and metaphase have shown the following results: Chromosome 1 is a median chromosome with a long arm (Telo 1L) carrying a centromeric band, while short arm (Telo 1S) has a centromeric band and two intercalary bands. Chromosome 2 is the longest in the barley chromosome complement. Both arms show a centromeric band, an intercalary band and two faint dots on each chromatid at middle to distal regions. The banding pattern of Telo 2L (a centromeric and an intercalary band) and Telo 2S (a centromeric, two intercalary and a terminal band) corresponded to the banding pattern of the long and short arm of chromosome 2. Chromosome 3 is a submedian chromosome and its long arm is the second longest in the barley chromosome complement. Telo 3L has a centromeric (fainter than Telo 3S) and an intercalary band. It also shows a faint dot on each chromatid at distal region. Telo 3S shows a dark centromeric band only. Chromosome 4 is the most heavily banded one in barley chromosome complement. Both arms showed a dark centromeric band. Three dark intercalary bands and faint telomeric dot were observed in the long arm (4L), while two dark intercalary bands in the short arm (4S) were arranged very close to each other and appeared as a single large band in metaphase chromosomes. A faint dot was observed in each chromatid at the distal region in the 4S. Chromosome 5 is the smallest chromosome, which carries a centromeric band and an intercalary band on the long arm. Telo 5L, with a faint centromeric band and an intercalary band, is similar to the long arm. Chromosomes 6 and 7 are satellited chromosomes showing mainly centromeric bands. Telo 6S is identical to the short arm of chromosome 6 with a centromeric band. Telo 3L and Telo 4L were previously designated as Telo 3S and Telo 4S based on the genetic/linkage analysis. However, from the Giemsa banding pattern it is evident that these telocentric chromosomes are not correctly identified and the linkage map for chromosome 3 and 4 should be reversed. One out of ten triple 2S plants studied showed about 50% deficiency in the distal portion of the short arm. Telo 4L also showed a deletion of the distal euchromatic region of the long arm. This deletion (32%) may complicate genetic analysis, as genes located on the deficient segment would show a disomic ratio. It has been clearly demonstrated that the telocentric chromosomes of barley carry half of the centromere. Banding pattern polymorphism was attributed, at least partly, to the mitotic stages and differences in techniques.Contribution from the Department of Agronomy and published with the approval of the Director of the Colorado State University Experiment Station as Scientific Series Paper No. 2730. This research was supported in part by the USDA/SEA Competitive Research Grant 5901-0410-9-0334-0, USDA/ SEA-CSU Cooperative Research Grant 12-14-5001-265 and Colorado State University Hatch Project. This paper was presented partly at the Fourth International Barley Genetics Symposium, Edinburgh, Scotland, July 22–29, 1981  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号