首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We used playback presentations to free-flying bats of 3 species to assess the influence of echolocation call design and foraging strategy on the role of echolocation calls in communication. Near feeding sites over water, Myotis lucifugus and M. yumanensis responded positively only to echolocation calls of conspecifics. Near roosts, these bats did not respond before young of the year became volant, and after this responded to presentations of echolocation calls of similar and dissimilar design. At feeding sites Lasiurus borealis responded only to echolocation calls of conspecifics and particularly to “feeding buzzes”. While Myotis, particularly subadults, appear to use the echolocation calls of conspecifics to locate feeding sites, L. borealis appears to use the calls of a foraging neighbour attacking prey to identify opportunities for ‘stealing’ food.  相似文献   

2.
The bat Myotis adversus hunts for prey by aerial hawking and by taking prey from the water surface with its feet (trawling). The flight performance and echolocation of this species were studied in Queensland, Australia, and comparisons were made with Myotis daubentoni , a bat filling a similar ecological niche in the Palaearctic Region. The bats foraged in very similar ways, using the same foraging tactics and feeding in similar habitats, yet they were not geometrically similar in shape. The slightly larger Myotis adversus had relatively larger wings than M. daubentoni , conferring a slightly lower wing-loading. Nevertheless, M. adversus flew faster than M. daubentoni during the searching phase of foraging. Myotis daubentoni turned in tighter circles than M. adversus . Both species used short frequency-modulated (FM) echolocation calls of a characteristic sigmoidal structure, and nulls typically observed in the calls were an observational artefact. Myotis adversus also adopted an unusual 'long'FM call while foraging. The relations between echolocation frequencies and body size were explored in male M. adversus . Specialized morphological and acoustic adaptations for prey capture by trawling in insectivorous bats are discussed.  相似文献   

3.
The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.  相似文献   

4.
The foraging and echolocation behaviour of Myotis evotis was investigated during substrate-gleaning and aerial-hawking attacks. Bats gleaned moths from both the ground and a bark-covered trellis, however, they were equally adept at capturing flying moths. The calls emitted by M. evotis during substrate-gleaning sequences were short, broadband, and frequency-modulated (FM). Three behavioural phases were identified: search, hover, and attack. Gleaning search calls were significantly longer in duration, lower in highest frequency, and larger in bandwidth than hover/attack calls. Calls were detected in only 68% of gleaning sequences, and when they were emitted, bats ceased calling 200 ms before attacking. Terminal feeding buzzes, the rapid increase in pulse repetition rate associated with an attempted prey capture, were never recorded during gleaning attacks. The echolocation calls uttered by M. evotis during aerial-hawking foraging sequences were also short duration, high frequency, FM calls. Two distinct acoustic phases were identified: approach and terminal. Approach calls were significantly different from terminal calls in all variables measured. Calls were detected in 100% of aerial-hawking attacks and terminal feeding buzzes were invariably produced. Gleaning hover/attack calls were spectrally similar to aerial approach calls, but were shorter in duration and emitted at a significantly lower (but constant) repetition rate than aerial signals. Although the foraging environment (flight cage contents) remained unchanged between tasks (substrate-gleaning vs. aerial-hawking), bats emitted significantly lower amplitude calls while gleaning. We conclude that M. evotis adjusts its echolocation behaviour to meet the perceptual demands (acoustical constraints) imposed by each foraging situations.Abbreviations BW bandwidth - CF constant frequency - dB SPL decibels sound pressure level - FM frequency modulated - HF highest frequency - LF lowest frequency - PF peak frequency Presented at the meeting Acoustic Images in Bat Sonar, a conference on FM echolocation honoring Donald R. Griffin's contributions to experimental biology (June 14–16, Brown University, Providence RI).  相似文献   

5.
We report on acoustic surveys of insectivorous bats conducted during seven months of the year using ANABAT recordings in two habitats (macadamia orchards and adjacent riparian bush) in a subtropical agro‐ecosystem in northern South Africa. We defined two functional foraging groups of bats based on their echolocation calls: (i) open‐air foragers (family Molossidae) having narrow‐band, low‐frequency, low duty cycle calls; and (ii) clutter‐edge foragers (families Miniopteridae and Vespertilionidae), having broad‐band, higher frequency, low duty cycle calls. Bat activity (number of bat passes) was not significantly influenced by habitat. Total bat activity and activity of both functional groups varied significantly between seasons, being highest in summer and autumn (coinciding with annual peaks in numbers of Twin spotted (Bathycoelia natalicola) and Green (Nezara spp) Stinkbugs, order Heteroptera, family Pentatomidae, and Macadamia Nut Borer moths, Cryptophlebia ombrodelta) and lower in winter and spring. No significant effect of moon phase was detected, either on total activity or activity of the two functional groups. We postulate that the significant pattern of seasonality of commuting and/or foraging activity of bats in macadamia orchards (which is more marked in open‐air foragers) may be driven by the seasonal abundance of pest insects such as stinkbugs and Macadamia Nut Borer moths.  相似文献   

6.
Group foraging has been suggested as an important factor for the evolution of sociality. However, visual cues are predominantly used to gain information about group members'' foraging success in diurnally foraging animals such as birds, where group foraging has been studied most intensively. By contrast, nocturnal animals, such as bats, would have to rely on other cues or signals to coordinate foraging. We investigated the role of echolocation calls as inadvertently produced cues for social foraging in the insectivorous bat Noctilio albiventris. Females of this species live in small groups, forage over water bodies for swarming insects and have an extremely short daily activity period. We predicted and confirmed that (i) free-ranging bats are attracted by playbacks of echolocation calls produced during prey capture, and that (ii) bats of the same social unit forage together to benefit from passive information transfer via the change in group members'' echolocation calls upon finding prey. Network analysis of high-resolution automated radio telemetry confirmed that group members flew within the predicted maximum hearing distance 94±6 per cent of the time. Thus, echolocation calls also serve as intraspecific communication cues. Sociality appears to allow for more effective group foraging strategies via eavesdropping on acoustical cues of group members in nocturnal mammals.  相似文献   

7.
Interspecific differences in traits can alter the relative niche use of species within the same environment. Bats provide an excellent model to study niche use because they use a wide variety of behavioral, acoustic, and morphological traits that may lead to multi‐species, functional groups. Predatory bats have been classified by their foraging location (edge, clutter, open space), ability to use aerial hawking or substrate gleaning and echolocation call design and flexibility, all of which may dictate their prey use. For example, high frequency, broadband calls do not travel far but offer high object resolution while high intensity, low frequency calls travel further but provide lower resolution. Because these behaviors can be flexible, four behavioral categories have been proposed: (a) gleaning, (b) behaviorally flexible (gleaning and hawking), (c) clutter‐tolerant hawking, and (d) open space hawking. Many recent studies of diet in bats use molecular tools to identify prey but mainly focus on one or two species in isolation; few studies provide evidence for substantial differences in prey use despite the many behavioral, acoustic, and morphological differences. Here, we analyze the diet of 17 sympatric species in the Chihuahuan desert and test the hypothesis that peak echolocation frequency and behavioral categories are linked to differences in diet. We find no significant correlation between dietary richness and echolocation peak frequency though it spanned close to 100 kHz across species. Our data, however, suggest that bats which use both gleaning and hawking strategies have the broadest diets and are most differentiated from clutter‐tolerant aerial hawking species.  相似文献   

8.
Jacobs DS  Barclay RM  Walker MH 《Oecologia》2007,152(3):583-594
The peak echolocation frequency of insectivorous bats generally declines as body size increases. However, there are notable exceptions to this rule, with some species, such as Rhinolophus clivosus, having a higher than expected peak frequency for their body size. Such deviations from allometry may be associated with partitioning of foraging habitat (the foraging habitat hypothesis) or insect prey (the prey detection hypothesis). Alternatively, the deviations may be associated with the partitioning of sonar frequency bands to allow effective communication in a social context (the acoustic communication hypothesis). We tested the predictions of these hypotheses through comparisons at the family, clade and species level, using species of rhinolophids in general and R. clivosus, a species with a wide distribution, as a specific test case. We compared the wing parameters, echolocation frequency and ecology of R. clivosus to those of the sympatric R. capensis. Rhinolophus clivosus has a much higher echolocation frequency than predicted from its wing loading or body mass. Furthermore, contrary to the predictions of the foraging habitat hypothesis, we found no difference in foraging habitat between R. clivosus and R. capensis. The size range of insect prey taken by the two species also overlapped almost completely, contrary to the prey detection hypothesis. On the other hand, the variation of echolocation frequencies around the allometric relationship for rhinolophids was smaller than that for Myotis spp., supporting the prediction of the acoustic communication hypothesis. We thus propose that the relatively high peak frequency of R. clivosus is the result of partitioning of sonar frequency bands to minimize the ambiguity of echolocation calls during social interactions.  相似文献   

9.
Flexibility in the echolocation call structure of bats can improve their performances, because, in some situations, some signal designs are better than others. Hence, at least some bats should adjust their echolocation calls according to the setting in which they are operating but also to the specific task at hand, that is their behavioral intention. We studied variation in the echolocation calls of Pipistrellus kuhlii emitted during four flight situations that were similar in setting but differed in behavioral context: emergence from a roost, commuting to and from foraging sites, foraging and returning to a roost. Echolocation calls produced by P. kuhlii differed significantly according to the flight situation. Call types differed most distinctly between foraging and commuting. We also found a high variance in the emergence calls we recorded, perhaps reflecting pre- and post-takeoff calls. Discriminant function analysis on calls emitted while foraging, commuting or returning to the roost classified the calls to the correct group 73.3% of the time. The differences between bats' echolocation calls in different flight situations might indicate an intrinsic change in the bat's behavior. Recognizing these differences could be crucial when using call variables to identify bat species.  相似文献   

10.
We present behavioural data demonstrating that the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, can glean prey from surfaces and take prey on the wing. Our data were collected in a large outdoor flight room mimicking a cluttered environment. We compared and analysed flight behaviours and echolocation calls used by each species of bat when aerial hawking and gleaning. Our results challenge the traditional labelling ofM. lucifugus as an obligate aerial-hawking species and show that M. septentrionalis, which is often cited as a gleaning species, can capture airborne prey. As has been shown in previous studies, prey-generated acoustic cues were necessary and sufficient for the detection and localization of perched prey. We argue that the broadband, high-frequency, downward-sweeping, frequency-modulated calls used by some bats when gleaning prey from complex surfaces resolve targets from background. First, because calls of lower frequency and narrower bandwidth are sufficient for assessing a surface before landing, and second, because there are few, if any, simple surfaces in nature from which substrate-gleaning behaviours in wild bats would be expected. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.  相似文献   

11.
12.
We investigated the detection cues used by the aerial-hawking bat Eptesicus nilssonii foraging in a cluttered environment. The bats can detect and attack rapidly moving targets within the clutter, i.e. below grass panicles, by using prey motion as a cue. Stationary objects are attacked only above the grass, but still within the clutter overlap zone. To test if the bats were guided by flutter from moth wings or by vision when searching for stationary targets, they were presented with male ghost swifts mounted on top of steel wires. There was no difference in attack frequency on live, fluttering moths compared to dead and spread ones. However, when comparing white and dark moths, we found a significantly higher attack frequency on white ones. As the attacks always were guided by echolocation calls, we hypothesize that northern bats, at least in the initial search phase, use visual cues as a complement to detect stationary ghost swifts.  相似文献   

13.
Bats that glean prey (capture them from surfaces) produce relatively inconspicuous echolocation calls compared to aerially foraging bats and could therefore be difficult predators to detect, even for insects with ultrasound sensitive ears. In the cricket Teleogryllus oceanicus, an auditory interneuron (AN2) responsive to ultrasound is known to elicit turning behaviour, but only when the cricket is in flight. Turning would not save a cricket from a gleaning bat so we tested the hypothesis that AN2 elicits more appropriate antipredator behaviours when crickets are on the ground. The echolocation calls of Nyctophilus geoffroyi, a sympatric gleaning bat, were broadcast to singing male and walking female T. oceanicus. Males did not cease singing and females did not pause walking more than usual in response to the bat calls up to intensities of 82 dB peSPL. Extracellular recordings from the cervical connective revealed that the echolocation calls elicited AN2 action potentials at high firing rates, indicating that the crickets could hear these stimuli. AN2 appears to elicit antipredator behaviour only in flight, and we discuss possible reasons for this context-dependent function.  相似文献   

14.
Echolocating bats cry out loud to detect their prey   总被引:1,自引:0,他引:1  
Surlykke A  Kalko EK 《PloS one》2008,3(4):e2036
Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships.  相似文献   

15.
Knowledge of interspecies information transfer in mammals is scarce compared with other taxa. We investigated whether eavesdropping on echolocation calls of bats may be used by sympatric bats with similar feeding ecology. We performed playback experiments with three free‐ranging neotropical bat species, broadcasting search phase calls or feeding buzzes of conspecifics and heterospecifics belonging either to the same or to another bat family. Both the greater fishing bat Noctilio leporinus and the lesser bulldog bat Noctilio albiventris (Noctilionidae) reacted with repeated approaches in response to playbacks of search phase calls and feeding buzzes from conspecifics and also to congeneric feeding buzzes. Noctilio leporinus also were attracted by search phase calls from its sister species N. albiventris. In contrast, the sac‐winged bat Saccopteryx bilineata (Emballonuridae) did not react to any playback sequences presented. Our results support the existence of eavesdropping behaviour for both species of Noctilio. We suggest that information transfer via eavesdropping may depend mainly on species‐specific traits, including foraging style and social behaviour (territoriality, group foraging), and on distribution and density of prey. Call design had only a minor influence on the reaction.  相似文献   

16.
Echolocation constraints of Daubenton's Bat foraging over water   总被引:2,自引:0,他引:2  
1. Daubenton's Bats ( Myotis daubentonii ) foraging over a stream concentrated their activity over calm surfaces, avoiding an adjacent area with small ripples (< 3 cm high). Aerial insects were most abundant over the ripples, so insect distribution could not explain why the bats avoided this area.
2. The bats flew low over water and always ( N = 22) directed the head forwards, presumably emitting the echolocation beam parallel to the surface, thus minimizing clutter. At an angle of incidence of 30° there was significantly more clutter from the rippled water.
3. The ripples produced ultrasonic noises in the form of transient pulses at an average rate of 6·2 per second. In the present case, such pulses were common enough potentially to interfere with target detection by the bats. Transient noises and echo clutter from moving ripples may be the principal reason why bats generally avoid foraging low over turbulent water.
4. The target strength of a potential insect prey at the water surface and the source levels of the bats' searching signals were measured to use in estimating the echo level at the bat when it detects the prey. The echo level at detection (+ 38 dB sound pressure level) was about the same as the clutter level extrapolated to the detection distance. This suggests that Daubenton's Bat operates at very low signal-to-noise ratios when foraging for insects near the water surface.  相似文献   

17.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

18.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

19.
In southern Central America, 10 species of emballonurid bats occur, which are all aerial insectivores: some hunt flying insects preferably away from vegetation in open space, others hunt in edge space near vegetation and one species forages mainly over water. We present a search call design of each species and link signal structure to foraging habitat. All emballonurid bats use a similar type of echolocation call that consists of a central, narrowband component and one or two short, frequency-modulated sweeps. All calls are multi-harmonic, generally with most energy concentrated in the second harmonic. The design of search calls is closely related to habitat type, in particular to distance of clutter. Emballonurid bats foraging in edge space near vegetation and over water used higher frequencies, shorter call durations and shorter pulse intervals compared with species mostly hunting in open, uncluttered habitats. Peak frequency correlated negatively with body size. Regular frequency alternation between subsequent calls was typical in the search sequences of four out of 10 species. We discuss several hypotheses regarding the possible role of this frequency alternation, including species identification and partitioning of acoustic channels. Furthermore, we propose a model of how frequency alternation could increase the maximum detection distance of obstacles by marking search calls with different frequencies.  相似文献   

20.
All organisms have specialized systems to sense their environment. Most bat species use echolocation for navigation and foraging, but which and how ecological factors shaped echolocation call diversity remains unclear for the most diverse clades, including the adaptive radiation of neotropical leaf‐nosed bats (Phyllostomidae). This is because phyllostomids emit low‐intensity echolocation calls and many inhabit dense forests, leading to low representation in acoustic surveys. We present a field‐collected, echolocation call dataset spanning 35 species and all phyllostomid dietary guilds. We analyze these data under a phylogenetic framework to test the hypothesis that echolocation call design and parameters are specialized for the acoustic demands of different diets, and investigate the contributions of phylogeny and body size to echolocation call diversity. We further link call parameters to dietary ecology by contrasting minimum detectable prey size estimates (MDPSE) across species. We find phylogeny and body size explain a substantial proportion of echolocation call parameter diversity, but most species can be correctly assigned to taxonomic (61%) or functional (77%) dietary guilds based on call parameters. This suggests a degree of acoustic ecological specialization, albeit with interspecific similarities in call structure. Theoretical MDPSE are greatest for omnivores and smallest for insectivores. Omnivores significantly differ from other dietary guilds in MDPSE when phylogeny is not considered, but there are no differences among taxonomic dietary guilds within a phylogenetic context. Similarly, predators of non‐mobile/non‐evasive prey and predators of mobile/evasive prey differ in estimated MDPSE when phylogeny is not considered. Phyllostomid echolocation call structure may be primarily specialized for overcoming acoustic challenges of foraging in dense habitats, and then secondarily specialized for the detection of food items according to functional dietary guilds. Our results give insight into the possible ecological mechanisms shaping the diversity of sensory systems, and their reciprocal influence on resource use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号