首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple family of models of a bacterial population in a time varying environment in which cells can transit between dormant and active states is constructed. It consists of a linear system of ordinary differential equations for active and dormant cells with time-dependent coefficients reflecting an environment which may be periodic or random, with alternate periods of low and high resource levels. The focus is on computing/estimating the dominant Lyapunov exponent, the fitness, and determining its dependence on various parameters and the two strategies—responsive and stochastic—by which organisms switch between dormant and active states. A responsive switcher responds to good and bad times by making timely and appropriate transitions while a stochastic switcher switches continuously without regard to the environmental state. The fitness of a responsive switcher is examined and compared with fitness of a stochastic switcher, and with the fitness of a dormancy-incapable organism. Analytical methods show that both switching strategists have higher fitness than a dormancy-incapable organism when good times are rare and that responsive switcher has higher fitness than stochastic switcher when good times are either rare or common. Numerical calculations show that stochastic switcher can be most fit when good times are neither too rare or too common. This research was supported by NSF Grant DMS 0414270, Department of Mathematics, Arizona State University, Tempe, AZ.  相似文献   

2.
Although sexuality is considered evolutionarily progressive, clonality is very common in plants and the prevailing means of reproduction in several community types. I discuss what could be the forces that have influenced the selection among sexual versus non-sexual reproduction at community level. I propose that, among others, the probability of self-competition must have been one of the key factors. The probability of meeting one’s own genes for wasteful competition is higher in communities where clonality prevails (and relatively high mean intra-species relatedness is expected), and higher in communities with low species diversity. On the other hand, lower diversity indicates a higher average fitness of species since the (finite) total pool of resources is distributed among fewer population with high density. I show, using four community types with contrasting diversity and clonality that community fitness (average fitness in the assemblage of species) can be expressed as the product of two variables––anti-diversity and degree of sexuality.  相似文献   

3.
Host–parasite interactions are ideal systems for the study of coevolutionary processes. Although infections with multiple parasite species are presumably common in nature, most studies focus on the interactions of a single host and a single parasite. To the best of our knowledge, we present here the first study on the dependency of parasite virulence and host resistance in a multiple parasite system. We evaluated whether the strength of host defense depends on the potential fitness cost of parasites in a system of two Southeast Asian army ant hosts and five parasitic staphylinid beetle species. The potential fitness costs of the parasites were evaluated by their predation behavior on host larvae in isolation experiments. The host defense was assessed by the ants’ aggressiveness towards parasitic beetle species in behavioral studies. We found clear differences among the beetle species in both host–parasite interactions. Particular beetle species attacked and killed the host larvae, while others did not. Importantly, the ants’ aggressiveness was significantly elevated against predatory beetle species, while non-predatory beetle species received almost no aggression. As a consequence of this defensive behavior, less costly parasites are more likely to achieve high levels of integration in the ant society. We conclude that the selection pressure on the host to evolve counter-defenses is higher for costly parasites and, thus, a hierarchical host defense strategy has evolved that depends on the parasites’ impact.  相似文献   

4.
Starrfelt J 《Genetica》2011,139(8):1019-1021
The notion of intragenomic bet-hedging is introduced by modeling a system where one locus is seen as setting the “environment” for selection in a two-locus genetic system. Using a spatially structured simulation model I show that bet-hedging alleles with a lower mean fitness and lower variance of fitness across genotypes at a different locus can go to fixation, potentially providing a mechanism for the reduction of severe heterozygote advantage.  相似文献   

5.
The Amy locus polymorphism of Drosophila subobscura is used as a model system for an experimental population genetic study of adaptive significance of α-amylase activity on substrates of different carbohydrate compositions. So far, fitness components have not commonly been included in ecological-genetic studies of α-amylase polymorphism in this species. In the present paper, fitness components are analyzed in relation to different amylase activities in D. subobscura individuals homozygous for the “slow” and the “fast” Amy allele, associated with substrates of different carbohydrate compositions. The results indicate a significant effect of substrate carbohydrate composition on fitness components of the genotypes homozygous for S or F Amy allele in D. subobscura through their enzyme activity. The text was submitted by the authors in English.  相似文献   

6.
Different habitat preferences in animals have been interpreted mostly as a result of different adaptive design of the species and/or as a result of interspecific competition. We propose an alternative view of evolution of habitat preferences. Our model is based on progressive stochastic acquisition of cognitive clues discriminating habitat features which correlate with expected fitness. We assume that acquisition of each cognitive clue allowing discrimination of ‘better’ and ‘worse’ habitats (according to the average fitness in each habitat) will constrain further evolution, because each further clue will discriminate habitats only within previously acquired preferences. Simple simulation model shows that if it is the case, even the species with equal habitat-related fitness differences will rapidly diversify in their habitat preferences. Therefore, similarly as in the evolution of other species-specific traits, the evolution of animal–habitat relationship may be strongly affected by stochastic events and historical contingency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Reproductive interference is interspecific sexual interactions that are costly to at least one species involved. Although many studies have reported a substantial fitness cost associated with reproductive interference, suggesting its ecological significance, others have not observed reproductive interference in study species. Reproductive interference that incurs a large fitness cost is more likely to occur during secondary contacts than between long-coexisting species. I first explain the rationale underlying this prediction using existing literature. Next, I present a conceptual framework to classify pairs of interacting species into one of four states, defined by the ecological and evolutionary stabilities of the species pairs. I discuss how the stability states of species pairs are likely to change over time, along with changes in the demographic and evolutionary role of reproductive interference. I then perform literature survey to test the prediction that reproductive interference should be more prevalent in secondary contact. Finally, I discuss the implications of the proposed conceptual framework and literature survey result.  相似文献   

8.
In two space dimensions, the parabolic–parabolic Keller–Segel system shares many properties with the parabolic–elliptic Keller–Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M c . However, this threshold is not as clear in the parabolic–parabolic case as it is in the parabolic–elliptic case, in which solutions with mass above M c always blow up. Here we study forward self-similar solutions of the parabolic–parabolic Keller–Segel system and prove that, in some cases, such solutions globally exist even if their total mass is above M c , which is forbidden in the parabolic–elliptic case.  相似文献   

9.
Most of the resident plants within vegetation fail to leave descendants because of death without sex—i.e. sexual reproduction fails (zero fecundity), primarily because of relatively small plant size. I propose that this ‘problem of the small’ represents one of the principal driving forces of evolution by natural selection, and that the main product of this selection is ‘reproductive economy’, manifested by several plant traits that are widely distributed among angiosperms: sexual maturity at a relatively young age and small size, relatively small seed size, selfing (including through mixed mating), and of particular interest here, clonality. In non-clonal species, an offspring develops from a zygote into a single ‘rooted unit’, i.e. a distinct vascular transition point between live shoot and root tissue. Clonal species can produce an indeterminate number of these rooted unit offspring asexually, all as products of a single zygote. Clonality is a common strategy in angiosperms because it confers a potential two-fold fitness benefit—especially in relatively small species—by promoting longevity of the zygote product, while at the same time providing a fecundity supplement (through asexual multiplication of rooted units), thereby allowing offspring production economically, i.e. without requiring large adult size, and without even requiring the fertilization of ovules. The primary fitness benefit from clonality, therefore, is that the somatic product of a zygote can effectively avoid an intrinsic limitation predicted for all non-clonal plants: the trade-off between longevity and the potential rate of offspring/descendant production. These major fitness benefits of clonality are explored in considering why clonality is less common in larger species, why the largest species (trees) generally do not have the longest-lived zygote product, and in re-assessing traditional and recent views concerning the loss of sex in clonal plants, the predicted trade-off between the size and number of clonal offspring, and the predicted trade-off between sexual and asexual reproduction.  相似文献   

10.
The Fundamental Constraint on the evolution of culture   总被引:1,自引:0,他引:1  
This paper argues that there is a general constraint on the evolution of culture. This constraint – what I am calling the Fundamental Constraint – must be satisfied in order for a cultural system to be adaptive. The Fundamental Constraint is this: for culture to be adaptive there must be a positive correlation between the fitness of cultural variants and their fitness impact on the organisms adopting those variants. Two ways of satisfying the Fundamental Constraint are introduced, structural solutions and evaluative solutions. Because of the limitations on these solutions, this constraint helps explain why there is not more culture in nature, why the culture that does exist has the form it has, and why complex, cumulative culture is restricted to the human species.  相似文献   

11.
Molecular evolution is modelled by erroneous replication of binary sequences. We show how the selection of two species of equal or almost equal selective value is influenced by its nearest neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates we find that the Hamming distance between the species determines selection. As the error rate increases the fitness parameters of neighbouring species become more and more important. In the case of almost neutral sequences we observe a critical replication accuracy at which a drastic change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently mutating populations fitness turns out to be an ensemble property rather than an attribute of the individual. In addition we investigate the time dependence of the mean excess production as a function of initial conditions. Although it is optimized under most conditions, cases can be found which are characterized by decrease or non-monotonous change in mean excess productions.  相似文献   

12.
The parapatric sibling ant species Temnothorax nylanderi and T. crassispinus hybridize in the contact zone in the Franconian Jura, Southern Germany. Aim of our study was to investigate the impact of hybridization on colony composition and fitness. We classified colonies as either ‘pure’ or containing hybrids by determining their allozyme pattern at GPI, an enzyme that is fixed for different alleles in the two parental species, and quantified their reproductive output. Most colonies with hybrid workers had a T. crassispinus queen. Colonies with heterozygous, hybrid workers produced more young workers than colonies of the parental species but similar numbers of male and female sexuals. Female sexuals from colonies with heterozygous workers had a significantly lower weight than female sexuals from pure colonies. Only a single reproductive queen was found to be heterozygous, suggesting reduced fitness of hybrid queens. As in the parental species, hybrid colonies appear to be frequently taken over by alien queens, which obscures the genetic colony structure. Received 6 April 2006; revised 10 June 2006; accepted 15 June 2006.  相似文献   

13.
 A general haploid selection model with arbitrary number of multiallelic loci and arbitrary linkage distribution is considered. The population is supposed to be panmictic. A dynamically equivalent diploid selection model is introduced. There is a position effect in this model if the original haploid selection is not multiplicative. If haploid selection is additive then the fundamental theorem is established even with an estimate for the change in the mean fitness. On this basis exponential convergence to an equilibrium is proved. As rule, the limit states are single-gamete ones. If, moreover, linkage is tight, then the single-gamete state with maximal fitness attracts the population for almost all initial states. Received 27 November 1995; received in revised form 17 January 1996  相似文献   

14.
The relationship between invasive alien species and main climatic zones   总被引:1,自引:0,他引:1  
Analysis of numbers of invasive species (insects, plants, plant diseases) in each of Chinese provinces and the world’s climatic zones respectively, demonstrated positive correlations between diversity of bioinvasion and air temperature and precipitation (the two main criteria for classifying world climate types). When the air temperature is within the range of 1–25°C, the degree of diversity of invasive alien species increases exponentially with air temperature. However, when the air temperature falls outside the range of 1–25°C, the diversity of harmful invasive alien species changes with air temperature in a parabolic pattern, showing a “mid-latitude bulge”. Namely, when air temperatures are too high or too low, a lower average invasion frequency of harmful alien species is observed. Invasion by harmful invasive alien species is more weakly related to precipitation. Different climatic zones showed dramatic differences in resistance to the invasion of invasive alien species due to their different characteristic climatic factors, mainly including air temperature and precipitation.  相似文献   

15.
Serotiny—the retention of seeds in the mother plant for over a year—in unpredictable environments may increase the probability that at least some seeds are dispersed during favorable periods. Propagules may be expelled when environmental cues announcing favorable conditions occur, or be gradually released into the environment. This could be a bet-hedging strategy increasing the long-term fitness by reducing interannual variability in reproduction. However, the impact of seed retention on the population dynamics of serotinous species and its contribution to fitness has been barely explored under field conditions. We assessed these issues in the threatened Mammillaria pectinifera, a small globose cactus that gets established only in exceptionally rainy years. This species expels some seeds actively during unusually rainy periods, while dispersing others passively over several years. Dynamics of the seeds in the mother plant over two very contrasting years in terms of precipitation was incorporated into a stochastic matrix model. Seed retention was found to increase significantly the probability that some of the seeds retained in any given year are dispersed within a subsequent rainy period. Active seed-expulsion raises this probability even further. As expected in bet hedgers, seed retention increased fitness in the presence of temporal variability. Active fruit expulsion did not affect fitness, but reduced demographic stochasticity. The incomplete serotiny and fruit expulsion observed is the evolutionary outcome expected for the environment and life-history attributes of the species.  相似文献   

16.
Previous studies have suggested that several types of rules govern the generation of complex arm movements. One class of rules consists of optimizing an objective function (e.g., maximizing motion smoothness). Another class consists of geometric and kinematic constraints, for instance the coupling between speed and curvature during drawing movements as expressed by the two-thirds power law. It has also been suggested that complex movements are composed of simpler elements or primitives. However, the ability to unify the different rules has remained an open problem. We address this issue by identifying movement paths whose generation according to the two-thirds power law yields maximally smooth trajectories. Using equi-affine differential geometry we derive a mathematical condition which these paths must obey. Among all possible solutions only parabolic paths minimize hand jerk, obey the two-thirds power law and are invariant under equi-affine transformations (which preserve the fit to the two-thirds power law). Affine transformations can be used to generate any parabolic stroke from an arbitrary parabolic template, and a few parabolic strokes may be concatenated to compactly form a complex path. To test the possibility that parabolic elements are used to generate planar movements, we analyze monkeys’ scribbling trajectories. Practiced scribbles are well approximated by long parabolic strokes. Of the motor cortical neurons recorded during scribbling more were related to equi-affine than to Euclidean speed. Unsupervised segmentation of simulta- neously recorded multiple neuron activity yields states related to distinct parabolic elements. We thus suggest that the cortical representation of movements is state-dependent and that parabolic elements are building blocks used by the motor system to generate complex movements.  相似文献   

17.
It’s recently been argued that biological fitness can’t change over the course of an organism’s life as a result of organisms’ behaviors. However, some characterizations of biological function and biological altruism tacitly or explicitly assume that an effect of a trait can change an organism’s fitness. In the first part of the paper, I explain that the core idea of changing fitness can be understood in terms of conditional probabilities defined over sequences of events in an organism’s life. The result is a notion of “conditional fitness” which is static but which captures intuitions about apparent behavioral effects on fitness. The second part of the paper investigates the possibility of providing a systematic foundation for conditional fitness in terms of spaces of sequences of states of an organism and its environment. I argue that the resulting “organism–environment history conception” helps unify diverse biological perspectives, and may provide part of a metaphysics of natural selection.
Marshall AbramsEmail:
  相似文献   

18.
All known populations of the nationally critical tree daisy, Olearia gardneri, were studied using AFLP markers. With fewer than 160 individual plants, Olearia gardneri is the third-rarest tree in New Zealand and a good model with which to study evolutionary process in fragmented endangered plants. Genetic variation was at similar levels to other long-lived tree species in New Zealand and also as in other studies to date had poor correspondence between genetic and geographic distance. Genetic factors such as inbreeding depression and the loss of genetic diversity might lower fitness and have substantial consequences for evolution and survival of rare threatened plants. Due to the decline of this species in recent times it is imperative that conservation measures are undertaken, including revegetation. Despite considerable emphasis on “eco-sourcing” in plant recovery programmes there is strong evidence that this may not be the best strategy for O. gardneri due to breeding system and population size considerations.  相似文献   

19.
Next to its well-described ecological advantages, clonal growth in plants may incur fitness costs, which are associated with the effects of typically large clonal individuals on the patterns of pollen dispersal. These fitness costs include increased selfing and inbreeding depression in self-compatible species, and reduced mate availability in self-incompatible species. Although fitness costs may affect mating system evolution, there is currently no strong evidence available that either self-compatibility or self-incompatibility is associated with clonality. One reason for this may be the variety in growth forms (from guerrilla to phalanx habits) within clonal species, and the fact that growth form may strongly affect mating patterns. We present the results of a formal meta-analysis of 72 published studies, aiming at reporting genotypic diversities across studies and at relating mating system with clonal growth form and genotypic diversity. We found lower genotypic diversities in clonal self-incompatible species compared to self-compatible species, suggesting that mate availability may indeed be reduced in clonal self- incompatible species. We also cannot confirm that mating system is associated with clonal growth form.  相似文献   

20.
The saddleback tamarin (Saguinus fuscicollis)combines a number of behavioral and physiological attributes which seem to violate “rules” of ethology. Of particular interest is the combination of facultative polyandry and high paternal investment. The social organization and breeding system of the tamarin also appear to combine reproductive restraint with an extremely high reproductive potential. These paradoxes may be resolved by noting that the combination of ecological circumstances and breeding systems has produced a species of limited genetic variability. Inclusive fitness is an important factor in situations of low genetic variability and may explain these apparent paradoxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号