共查询到20条相似文献,搜索用时 10 毫秒
1.
Ghrelin stimulates interleukin-8 gene expression through protein kinase C-mediated NF-kappaB pathway in human colonic epithelial cells 总被引:3,自引:0,他引:3
Zhao D Zhan Y Zeng H Moyer MP Mantzoros CS Pothoulakis C 《Journal of cellular biochemistry》2006,97(6):1317-1327
Ghrelin, a newly identified gastric peptide, is known for its potent activity in growth hormone (GH) release and appetite. Although ghrelin is involved in several other responses such as stress and intestinal motility, its potential role in intestinal inflammation is not clear. Here, we show that expression of ghrelin and its receptor mRNA is significantly increased during acute experimental colitis in mice injected intracolonically with trinitrobenzene sulfate (TNBS). We found by PCR that ghrelin receptor mRNA is expressed in non-transformed human colonic epithelial NCM460 cells. Exposure of NCM460 cells stably transfected with ghrelin receptor mRNA to ghrelin, increased IkappaBalpha phosphorylation and its subsequent degradation. In addition, ghrelin stimulated NF-kappaB-binding activity and NF-kappaB p65 subunit phosphorylation, and induced IL-8 promoter activity and IL-8 protein secretion. Furthermore, our data show that ghrelin-induced IkappaBalpha and p65 phosphorylation was markedly reduced by pharmacological inhibitors of intracellular calcium mobilization (BAPTA/AM) and protein kinase C (GF 109203X). Pretreatment with BAPTA/AM or GF109203X also significantly attenuated ghrelin-induced IL-8 production. Together, our results strongly suggest that ghrelin may be a proinflammatory peptide in the colon. Ghrelin may participate in the pathophysiology of colonic inflammation by inducing PKC-dependent NF-kappaB activation and IL-8 production at the colonocyte level. 相似文献
2.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production. 相似文献
3.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells. 相似文献
4.
Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells 总被引:4,自引:0,他引:4
Koon HW Zhao D Zhan Y Rhee SH Moyer MP Pothoulakis C 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(8):5050-5059
Substance P (SP) via its neurokinin-1 receptor (NK-1R) regulates several gastrointestinal functions. We previously reported that NK-1R-mediated chloride secretion in the colon involves formation of PG. PGE2 biosynthesis is controlled by cyclooxygenase-1 (COX-1) and COX-2, whose induction involves the STATs. In this study, we examined whether SP stimulates PGE2 production and COX-2 expression in human nontransformed NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) and identified the pathways involved in this response. SP exposure time and dose dependently induced an early (1-min) phosphorylation of JAK2, STAT3, and STAT5, followed by COX-2 expression and PGE2 production by 2 h. Pharmacologic experiments showed that PGE2 production is dependent on newly synthesized COX-2, but COX-1 protein. Inhibition of protein kinase Ctheta (PKCtheta), but not PKCepsilon and PKCdelta, significantly reduced SP-induced COX-2 up-regulation, and JAK2, STAT3, and STAT5 phosphorylation. Pharmacological blockade of JAK inhibited SP-induced JAK2, STAT3, and STAT5 phosphorylation; COX-2 expression; and PGE2 production. Transient transfection with JAK2 short-interferring RNA reduced COX-2 promoter activity and JAK2 phosphorylation, while RNA interference of STAT isoforms showed that STAT5 predominantly mediates SP-induced COX-2 promoter activity. Site-directed mutation of STAT binding sites on the COX-2 promoter completely abolished COX-2 promoter activity. Lastly, COX-2 expression was elevated in colon of mice during experimental colitis, and this effect was normalized by administration of the NK-1R antagonist CJ-12,255. Our results demonstrate that SP stimulates COX-2 expression and PGE2 production in human colonocytes via activation of the JAK2-STAT3/5 pathway. 相似文献
5.
Yefi R Ponce DP Niechi I Silva E Cabello P Rodriguez DA Marcelain K Armisen R Quest AF Tapia JC 《Journal of cellular biochemistry》2011,112(11):3167-3175
Augmented expression of protein kinase CK2 is associated with hyperproliferation and resistance to apoptosis in cancer cells. Effects of CK2 are at least partially linked to signaling via the Wnt/β-catenin pathway, which is dramatically enhanced in colon cancer. Cyclooxygenase-2 (COX-2), a Wnt/β-catenin target gene, has been associated with enhanced cancer progression and metastasis. However, the possibility that a connection may exist between CK2 and COX-2 has not been explored previously. Here we investigated changes in COX-2 expression and activity upon CK2 modulation and evaluated how these changes affected cell viability. COX-2 expression and cell viability decreased upon selective inhibition of COX-2 with SC-791 or CK2 with 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), both in human colon (HT29-ATCC, HT29-US, DLD-1) and breast (ZR-75) cancer cells, as well as in human embryonic kidney (HEK-293T) cells. On the other hand, ectopic CK2α expression promoted up-regulation of COX-2 by activating the Wnt/β-catenin pathway in HEK-293T cells. Noteworthy, over-expression of either CK2α, β-catenin or COX-2, as well as supplementation of the medium with prostaglandin E2 (PGE2), all were individually sufficient to overcome limitations in cell viability triggered by CK2 inhibition either upon addition of DMAT or over-expression of a dominant negative CK2α variant. Altogether, these findings provide new insight to the role of CK2 in cancer by up-regulating COX-2 expression and thereby PGE2 production. 相似文献
6.
BACKGROUND: Cyclooxygenase 2 (COX-2) is induced by the presence of Helicobacter pylori (H. pylori) on the gastric mucosa as part of the inflammatory response; this results in the synthesis of prostaglandins that amplify the local inflammatory response. The presence of H. pylori inhibits the secretion of ascorbate into the gastric lumen. Interestingly, ascorbate inhibits the growth of H. pylori and low dietary levels are associated with an increased risk of gastric adenocarcinoma. We therefore investigated the effect of ascorbate on H. pylori mediated COX-2 induction and prostaglandin production in vitro. METHODS: H. pylori was cocultured with gastric epithelial cells in the presence of ascorbate at physiological concentrations. The expression of COX-2 was assessed by Western blotting and prostaglandin E(2) (PGE(2)) was assessed by ELISA. RESULTS: Ascorbate inhibited gastric cell PGE(2) synthesis but not in COX-2 expression in response to H. pylori. In the absence of the organism, ascorbate also reduced PGE(2) expression in cells that constitutively express COX-2, again with no reduction of COX-2 protein expression. CONCLUSIONS: Physiological concentrations of ascorbate inhibit PGE(2) but not COX-2 expression in response to H. pylori in gastric epithelial cells. 相似文献
7.
8.
Ikeda-Matsuo Y Ikegaya Y Matsuki N Uematsu S Akira S Sasaki Y 《Journal of neurochemistry》2005,94(6):1546-1558
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma. 相似文献
9.
10.
11.
It has recently been shown that the activation of protein kinase C (PKC) induces protein tyrosine phosphorylation in osteoblast-like MC3T3-E1 cells. We previously reported that the activation of PKC stimulates phosphatidylcholine-hydrolyzing phospholipase D in these cells. In this study, we examined whether protein tyrosine kinase is involved in the PKC-induced activation of phospholipase D in MC3T3-E1 cells. Genistein, an inhibitor of protein tyrosine kinases, which by itself had little effect on choline formation, significantly suppressed the formation of choline induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, in a dose-dependent manner. Tyrphostin, an inhibitor of protein tyrosine kinases chemically distinct from genistein, also dose-dependently suppressed the TPA-induced formation of choline. Sodium orthovandate, an inhibitor of protein tyrosine phosphatases, significantly enhanced the TPA-induced formation of choline in a dose-dependent manner. These results strongly suggest that protein tyrosine kinase regulates phospholipase D activity at a point downstream from PKC in osteoblast-like cells. 相似文献
12.
13.
14.
15.
Gloria Gutiérrez‐Venegas Oscar Alonso Luna Jairo Agustín Ventura‐Arroyo Cristina Hernández‐Bermúdez 《Microbiology and immunology》2013,57(12):849-856
Periodontitis is an inflammatory disease affecting the connective tissue and supporting bone surrounding the teeth. In periodontitis, human gingival fibroblasts (HGFs) synthesize IL‐1β, causing a progressive inflammatory response. Flavones demonstrate a variety of biological activity: among others, they possess anti‐inflammatory properties. Myricetin is a flavone with a strong anti‐inflammatory activity. The objective of this study was to evaluate the effect of the flavonoid myricetin on HGFs under inflammatory conditions induced by lipoteichoic acid (LTA). the effect of myricetin on HGFs was assessed by measuring cell viability, signaling pathways and IL‐1β expression and synthesis. It was found that, over time, myricetin did not affect cell viability. However, it inhibited activation of p38 and extracellular‐signal‐regulated kinase‐1/2 in LTA‐treated HGFs and also blocked IκB degradation and cyclooxygenase‐2 and prostaglandin E2 synthesis and expression. These findings suggest that myricetin has therapeutic effects in the form of controlling LTA‐induced inflammatory responses. 相似文献
16.
Rösch S Ramer R Brune K Hinz B 《Biochemical and biophysical research communications》2005,338(2):1171-1178
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP. 相似文献
17.
Vargas-Lopes C Madeira C Kahn SA Albino do Couto I Bado P Houzel JC De Miranda J de Freitas MS Ferreira ST Panizzutti R 《Journal of neurochemistry》2011,116(2):281-290
D-serine is a co-agonist of NMDA receptor (NMDAR) and plays important roles in synaptic plasticity mechanisms. Serine racemase (SR) is a brain-enriched enzyme that converts L-serine to D-serine. SR interacts with the protein interacting with C-kinase 1 (PICK1), which is known to direct protein kinase C (PKC) to its targets in cells. Here, we investigated whether PKC activity regulates SR activity and D-serine availability in the brain. In vitro, PKC phosphorylated SR and decreased its activity. PKC activation increased SR phosphorylation in serine residues and reduced D-serine levels in astrocyte and neuronal cultures. Conversely, PKC inhibition decreased basal SR phosphorylation and increased cellular D-serine levels. In vivo modulation of PKC activity regulated both SR phosphorylation and D-serine levels in rat frontal cortex. Finally, rats that completed an object recognition task showed decreased SR phosphorylation and increased D-serine/total serine ratios, which was markedly correlated with decreased PKC activity in both cortex and hippocampus. Results indicate that PKC phosphorylates SR in serine residues and regulates D-serine availability in the brain. This interaction may be relevant for the regulation of physiological and pathological mechanisms linked to NMDAR function. 相似文献
18.
Nitric oxide (NO) regulates differentiation, survival, and cyclooxygenase (COX)-2 expression in articular chondrocytes. NO-induced apoptosis and dedifferentiation are mediated by p38 kinase activity and p38 kinase-independent and -dependent inhibition of protein kinase C (PKC)alpha and zeta. Because p38 kinase also activates NF-kappa B, we investigated the functional relationship between PKC and NF-kappa B signaling and the role of NF-kappa B in apoptosis, dedifferentiation, and COX-2 expression. We found that NO-stimulated NF-kappa B activation was inhibited by ectopic PKC alpha and zeta expression, whereas NO-stimulated inhibition of PKC alpha and zeta activity was not affected by NF-kappa B inhibition. Inhibition of NO-induced NF-kappa B activity did not affect inhibition of type II collagen expression but did abrogate COX-2 expression and apoptosis. Taken together, our results indicate that NO-induced inhibition of PKC alpha and zeta activity is required for the NF-kappa B activity that regulates apoptosis and COX-2 expression but not dedifferentiation in articular chondrocytes. 相似文献
19.
Hyejung Jung Heesung Chung Sung Eun Chang Sora Choi Inn‐Oc Han Duk‐Hee Kang Eok‐Soo Oh 《Pigment cell & melanoma research》2014,27(3):387-397
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases. 相似文献
20.
Z. Lahoua H. Vial F. Michel A. Crastes de Paulet M. E. Astruc 《Cellular signalling》1991,3(6):559-567
We previously demonstrated that the oxysterol potentiation of arachidonic acid release and prostaglandin biosynthesis induced by foetal calf serum activation of normal rat kidney (NRK) cells (fibroblastic clone 49F) was not related to a direct effect of oxysterols on cell free Ca2+ level. Since both Ca2+ variations and protein C are involved in arachidonic acid release in some models, we looked for a possible modulation by protein C in the oxysterol effect on arachidonic acid release. We show that when the phorbol ester 12-O-tetradecanoyl-phorbol-13acetate (TPA), a protein kinase C activator, was added to the culture medium, the oxyterol effect on arachidonic acid release and prostaglandin synthesis clearly increased. Moreover, the effect of TPA was dose-dependent and TPA EC50 (4 × 10−9 M) was unchanged in the presence of the oxysterol. Preincubation of cells with TPA for 24 h prevented the arachidonic acid release induced by TPA alone, whereas the oxysterol effect was decreased but not abolished. In the absence of serum, TPA and ionomycin added together induced the same noticeable (arachidonic acid) release and PGE2 synthesis as serum alone. Nevertheless, the potentiating effect of cholest-5-ene-3β,25-diol was much higher when serum itself was used to activate NRK cells than it was in the present serum-mimicking experimental conditions. Thus, the presence of growth factors is probably required to obtain a full oxysterol effect. We conclude that the oxysterol effect was synergistic with, but not fully dependent on, protein kinase C and Ca2+ ion fluxes, therefore oxysterols could affed earlier events triggered by serum growth factor binding to their cell membrane receptors. 相似文献