首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Harmful algae》2010,9(6):916-925
Blooms of benthic dinoflagellates belonging to the tropical genus Ostreopsis are an increasingly common phenomenon in temperate regions worldwide. This is reflected in the rapid upsurge of publications on Ostreopsis from temperate regions since 2000. Relatively little is known about these blooms or their effects on other organisms. An unprecedented bloom of Ostreopsis siamensis occurred on shallow reefs in northern New Zealand in 2004 providing an opportunity to examine the dynamics of an O. siamensis bloom and its effect on community structuring sea urchins (Evechinus chloroticus). The bloom occurred following a period of calm sea conditions with warmer than average water temperatures. The cover of O. siamensis was highly ephemeral and strongly related to temporal and spatial variation in wave action. Blooms were most prevalent at sites protected from prevailing swells where O. siamensis covered 30–60% of the reef with the concentrations on macroalgae reaching 1.4 × 106 cells g−1 wet weight, some of the highest recorded worldwide. Surveys of the health of sea urchins in relation to the cover of O. siamensis suggested strong negative effects on this ecologically important herbivore and urchin densities declined by 56–60% at bloom sites over the study period. Further research is needed to examine the factors controlling the distribution and intensity of this new phenomenon, and into the ecological effects of such blooms on marine communities and the potential mechanisms responsible.  相似文献   

2.
The benthic genus Ostreopsis contains toxic-bloom forming species and is an important cause of concern in warm-temperate and tropical waters. On the coast of Portugal, NE Atlantic, the occurrence of Ostreopsis cf. siamensis and Ostreopsis cf. ovata has been reported since 2008 and 2011, respectively. This work aims to understand the favorable conditions for high concentrations of Ostreopsis cells in the plankton at two sites, Lagos and Lisbon Bays, located in the South and West coast of Portugal, respectively. This study is based on weekly Ostreopsis abundance data in the plankton, from 2011 to 2017, daily satellite and in situ sea surface temperature (SST), and meteorological and sea state parameters, namely wind stress and significant wave height. The molecular identification of local Ostreopsis spp. is also presented. The maximum cell densities occur between late-summer and autumn. The distribution range of Ostreopsis cf. ovata is restricted to the South coast, while Ostreopsis cf. siamensis has a wider distribution range, being also present on the West coast. In the study period, there was only one occurrence of Ostreopsis spp., in Lagos Bay, with concentrations within the alert phase of monitoring. In Lagos Bay, high Ostreopsis spp. concentrations were related with positive SST anomalies. These high concentrations were often recorded after a period of almost 2-weeks to more than 4-weeks of low sea state (<0.6 m), followed by short time events of onshore wind and moderate waves (0.6–1 m). The former conditions are interpreted as favoring bloom development on the substrate and the latter as causing the re-suspension of Ostreopsis cells in the water column. In Lisbon Bay, O. cf. siamensis occurred in the plankton in few occasions and no clear relation could be established with the studied environmental variables. It is here hypothesized that the recent records of O. cf. siamensis in Lisbon Bay may correspond to an early colonization stage of an invasion process. Knowledge gained on Ostreopsis dynamics along the Portuguese coast can be used for both the improvement of benthic harmful algal blooms (BHABs) monitoring in the region and as a basis to design forecasting models.  相似文献   

3.
Ostreopsis is a toxic benthic dinoflagellate largely distributed worldwide in tropical and temperate areas. In the Mediterranean Sea, periodic summer blooms have been reported and have become a serious concern due to their direct impact on human health and the environment. Current microalgae identification is performed via light microscopy, which is time-consuming and is not able to differentiate among Ostreopsis species. Therefore, there is mature need for rapid, specific and easy-to-use detection tools. In this work, a colorimetric assay exploiting a combination of recombinase polymerase amplification (RPA) and a sandwich hybridisation assay was developed for O. cf. ovata and O. cf. siamensis detection and quantification. The specificity of the system was demonstrated by cross-reactivity experiments and calibration curves were successfully constructed using genomic DNA, achieving limits of detection of 10 and 14 pg/μL for O. cf. ovata and O. cf. siamensis, respectively. The assay was applied to the analysis of planktonic and benthic environmental samples from different sites of the Catalan coast. Species-specific DNA quantifications were in agreement with qPCR analysis, demonstrating the reliability of the colorimetric approach. Significant correlations were also obtained between DNA quantifications and light microscopy counts. The approach may be a valuable tool to provide timely warnings, facilitate monitoring activities or study population dynamics, and paves the way towards the development of in situ tools for the monitoring of harmful algal blooms.  相似文献   

4.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

5.
We report on the emergence of Cochlodinium polykrikoides blooms in the Peconic Estuary and Shinnecock Bay, NY, USA, during 2002–2006. Blooms occurred during late summer when temperatures and salinities ranged from 20 to 25 °C and 22 to 30 ppt, respectively. Bloom patches achieved cell densities exceeding 105 ml−1 and chlorophyll a levels exceeding 100 μg l−1, while background bloom densities were typically 103–104 cells ml−1. Light, scanning electron and ultrathin-section transmission electron microscopy suggested that cells isolated from blooms displayed characteristics of C. polykrikoides and provide the first clear documentation of the fine structure for this species. Sequencing of a hypervariable region of the large subunit rDNA confirmed this finding, displaying 100% similarity to other North American C. polykrikoides strains, but a lower similarity to strains from Southeast Asia (88–90%). Bioassay experiments demonstrated that 24 h exposure to bloom waters (>5 × 104 cells ml−1) killed 100% of multiple fish species (1-week-old Cyprinodon variegates, adult Fundulus majalis, adult Menidia menidia) and 80% of adult Fundulus heteroclitus. Microscopic evaluation of the gills of moribund fish revealed epithelial proliferation with focal areas of fusion of gill lamellae, suggesting impairment of gill function (e.g. respiration, nitrogen excretion, ion balance). Lower fish mortality was observed at intermediate C. polykrikoides densities (103–104 cells ml−1), while fish survived for 48 h at cell densities below 1 × 103 cells ml−1. The inability of frozen and thawed-, or filtered (0.2 μm)-bloom water to cause fish mortality suggested that the thick polysaccharide layer associated with cell membranes and/or a toxin principle within this layer may be responsible for fish mortality. Juvenile bay scallops (Argopecten irradians) and American oysters (Crassostrea virginica) experienced elevated mortality compared to control treatments during a 9-day exposure to bloom water (5 × 104 cells ml−1). Surviving scallops exposed to bloom water also experienced significantly reduced growth rates. Moribund shellfish displayed hyperplasia, hemorrhaging, squamation, and apoptosis in gill and digestive tissues with gill inflammation specifically associated with areas containing C. polykrikoides cells. In summary, our results indicate C. polykrikoides blooms have become annual events on eastern Long Island and that bloom waters are capable of causing rapid mortality in multiple species of finfish and shellfish.  相似文献   

6.
The potentially toxic diatom Pseudo-nitzschia is common in the northern Gulf of Mexico. Seven sites along the Alabama Gulf Coast have been monitored weekly to bi-weekly for Pseudo-nitzschia spp., which were detected in 489 of 829 samples (59%) taken between November 2003 and July 2008. Mean population density peaked at 19.6 ± 3.2 °C but bloom densities (>106 cells L−1) occurred at 20–32 °C. Mean population density peaked at a salinity of 30.1 ± 3.2, with blooms occurring between salinities of 26 and 32. Peaks in abundance occurred in April–May, with secondary peaks in fall. A cluster analysis of the relative frequency distributions of abundance by site showed that Little Lagoon Pass had a strong dissimilarity compared to other sites, due to a higher frequency of bloom densities and a lower frequency of absences. Salinities at Little Lagoon Pass were higher and less variable than at other sites. Pseudo-nitzschia spp. were absent more frequently from sites at the mouths of Perdido and Mobile Bays, where salinity was lower and more variable. Freshwater transport from Baldwin County, which lies between these bays, has previously been shown to be primarily through submarine groundwater discharge into the Gulf of Mexico. Groundwater in Baldwin County has high nitrate concentrations and discharge is most likely to occur adjacent to Little Lagoon. Blooms of Pseudo-nitzschia spp. at Little Lagoon Pass in spring were highly correlated with discharge from the Styx River, a proxy for groundwater discharge. Little Lagoon Pass may therefore be a hot-spot for blooms of Pseudo-nitzschia spp., because local maxima in discharge result in nutrient availability without significant reductions in salinity.  相似文献   

7.
Potentially toxic cyanobacterial blooms are becoming common in the Brazilian reservoirs in all regions of the country. During October 2004, a dense bloom of cyanobacteria occurred in the Monjolinho Reservoir (São Carlos, São Paulo State, Brazil) and a significant amount of cyanobacterial material accumulated on the water surface. Phytoplankton analysis showed that the main species in this bloom were Anabaena circinalis and Anabaena spiroides. Cladoceran (Ceriodaphnia dubia and Ceriodaphnia silvestrii) and mouse bioassays were performed to detect toxic products in extracts of the natural samples collected at the three different dates during in short period. To prepare the extracts, freeze-dried cells were dispersed in distilled water and subjected to repeated freeze/thaw cycles and sonication and centrifuging processes. Crude extracts were toxic both to cladocerans (LC50 94–406 mg freeze-dried cells L−1) and mice (indicative LD50 297–445 mg freeze-dried cells kg−1) and the toxicity of the bloom increased for cladocerans during the occurrence of the bloom. Toxin analysis by ELISA revealed that microcystin (MC) was found in the water of the reservoir (concentrations ranging from 28 to 45 μg L−1). In addition, microcystin was also found in freeze-dried cyanobacteria cells with concentrations ranging from 138 to 223 μg g−1. On the other hand, neurotoxins (saxitoxin and gonyautoxin) were not detected in any of the natural samples by HPLC. Signs of toxicity in mice did not indicate whether the bloom samples were predominantly hepatotoxic or neurotoxic. It is known that natural Anabaena blooms can contain other toxic compounds besides microcystins and neurotoxins such as lipopolysaccharides or other toxins not identified or known. Methods of detecting cyanotoxins used in this study were insufficient to clarify the toxicological features of Anabaena bloom and indicated that other methods should be investigated.  相似文献   

8.
The dinoflagellate Prorocentrum minimum (P. minimum) can be found in all seasons and over a broad range of habitat conditions in the Chesapeake Bay and its tributaries. Blooms (>3000 cells ml−1), locally referred to as ‘mahagony tides’, were restricted to salinities of 4.5–12.8 psu, water temperatures of 12–28 °C, and occurred most frequently in April and May. P. minimum blooms have been detected at routine water quality monitoring stations located in the main channel of the Bay and tidal tributaries. Nearshore investigations of bloom events, however, have accounted for the majority of events recorded in excess of 105 cells ml−1. Mahogany tides were associated with widespread harmful impacts including anoxic/hypoxic events, finfish kills, aquaculture shellfish kills and submerged aquatic vegetation losses. We summarize the state of knowledge regarding physical and chemical factors related to P. minimum blooms, their abundance, distribution and frequency, and ecological effects in Chesapeake Bay.  相似文献   

9.
This study examined a new method of mitigating harmful algal blooms (HABs) by combining biosurfactant sophorolipid and yellow clay. To investigate the effects and practicability of this HAB mitigation method, field experiments were carried out during a Cochlodinium bloom near Miruk Island, South Korea, in August 2002. Field experiments examined the effects of sophorolipid and yellow clay on Cochlodinium bloom mitigation and on marine plankton such as bacteriaplankton, heterotrophic protists, and zooplankton. A mixture of 5 mg l−1 sophorolipid and 1 g l−1 yellow clay was sprayed directly on the sea surface and its effect was compared with that of 10 g l−1 of yellow clay applied under similar conditions. The sophorolipid–yellow clay mixture more efficiently mitigated the Cochlodinium bloom (95% removal efficiency after 30 min) than yellow clay alone (79% after 30 min). Further, no variation in bacterial abundance occurred 30 min after spraying the sophorolipid–yellow clay mixture. After 30 min, heterotrophic protist abundance at the surface decreased 21 and 41%, respectively, following the sophorolipid–yellow clay mixture and yellow clay treatments. Zooplankton decreased by 38% 15 min after spraying the mixture and 67% 30 min after spraying the yellow clay. These results indicate that the mixture of sophorolipid and yellow clay had a less adverse effect on bacteriaplankton, heterotrophic protists, and zooplankton than the yellow clay, suggesting that the sophorolipid–yellow clay mixture can mitigate HABs efficiently with fewer negative effects on the pelagic ecosystem.  相似文献   

10.
Individuals of Ostreopsis, a genus containing potentially toxic species which affects human health, were collected during summer-autumn 2010 and 2011 from 17 sites located along the Atlantic coast of the Iberian Peninsula, a temperate area which during summer presents contrasting seawater temperatures. Ostreopsis cells were obtained by shaking macroalgae collected from rocky-shore areas bordering accessible beaches. Isolated strains and field samples were analyzed for morphological and phylogenetic characterization where sequences of the ITS1-5.8S-ITS2 region of the rDNA delineated two different species fitting Ostreopsis cf. ovata and Ostreopsis cf. siamensis. By means of calcofluor staining and scanning electron microscopy, it was observed that field samples of both species exhibited a wide and overlapping range of dorsoventral as well as width values. Those cells presented 11–18 pores/100 μm2 and were also similar concerning plates shape and size. The main differential feature between the two species was the presence of two sizes of thecal pores (0.07–0.13 μm and 0.15–0.39 μm) in Ostreopsis cf. siamensis and one size (0.24–0.56 μm) in Ostreopsis cf. ovata. A comparison of field vs. cultured cells indicated that field isolates presented larger cells than in culture.  相似文献   

11.
Magnitude and long-term periodicity of summer-autumn blooms of the nitrogen-fixing cyanobacterium, Nodularia spumigena, were characterized for hyposaline Pyramid Lake, Nevada, from Landsat MSS band 3 film negatives. Predicted lakewide mean chlorophyll a concentrations for Landsat overpasses during the July–October Nodularia bloom season ranged from 27 to 72 mg m–3 with an overall average concentration of 32 ± 7 mg m–3 between 1972 and 1986. Nodularia blooms were usually annual events. Blooms were not observed on Landsat images in only three of 15 years (1973, 1980, 1982) and midsummer calcium carbonate whitings occurred in two of these years (1973, 1980). Magnitude of Nodularia blooms was highly variable among years and very large blooms, where maximum mean chlorophyll a concentration exceeded one standard deviation of the 15 year overall mean (> 39 mg m–3) appeared in 1974, 1975, 1977, 1979, 1984, 1985 and 1986. Very large early-July blooms always occurred during or following years of above average fluvial discharge to Pyramid Lake (1984–1986) and were associated with meromixis produced by the large influx of freshwater.Several problems arise using Landsat remote sensing to estimate magnitude and periodicity of scum-forming blue-green algal blooms. These complications may reduce accuracy and precision of phytoplankton biomass estimates made from Landsat images. Nevertheless, Landsat remote sensing enabled us to quantify relative bloom magnitude with limited collection of ground-based data and at a large-scale temporal and spatial resolution not possible using alternative methodologies.  相似文献   

12.
Blooms of cyanobacteria are a recurrent phenomenon in the Baltic Sea, including the Gulf of Finland. The spatial extension, duration, intensity and species composition of these blooms varies widely between years. Alg@line data collected regularly from ferries as well as weather service and marine monitoring data from 1997 to 2005 are analysed to determine the main abiotic factors influencing the intensity and species composition of cyanobacterial blooms in the Gulf of Finland. It is demonstrated that the development of the Nodularia spumigena Mertens bloom is highly dependent on weather conditions such as photosynthetically active radiation and water temperature. Nutrient conditions, especially the surplus of phosphorus (according to Redfield ratio) related to the pre-bloom upwelling events in the Gulf, affect the intensity of Aphanizomenon sp. (L.) Ralfs blooms. Differences in bloom timing and duration indicate that, if the preconditions (like nutrient ratio/concentration and weather conditions) for bloom formation are favourable, then the Aphanizomenon bloom starts earlier, the overall bloom period is longer and the Nodularia peak might appear in a wider time window. Handling editor: K. Martens  相似文献   

13.
Harmful algal blooms (HABs) resulting in red discoloration of coastal waters in Sepanggar Bay, off Kota Kinabalu, Sabah, East Malaysia, were first observed in January 2005. The species responsible for the bloom, which was identified as Cochlodinium polykrikoides, coincided with fish mortalities in cage-cultures. Determinations of cell density between January 2005 and June 2006 showed two peaks that occurred in March–June 2005 and June 2006. Cell abundance reached a maximum value of 6 × 106 cells L−1 at the fish cage sampling station where the water quality was characterized by high NO3–N and PO4–P concentrations. These blooms persisted into August 2005, were not detected during the north–east monsoon season and occurred again in May 2006. Favorable temperature, salinity and nutrient concentrations, which were similar to those associated with other C. polykrikoides blooms in the Asia Pacific region, likely promoted the growth of this species. Identification of C. polykrikoides as the causative organism was based on light and scanning microscopy, and confirmed by partial 18S ribosomal DNA sequences of two strains isolated during the bloom event (GenBank accession numbers DQ915169 and DQ915170).  相似文献   

14.
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm ≤ 0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

15.
Major cyanobacterial blooms (biovolume > 4 mm3 L−1) occurred in the main water reservoirs on the upper Murray River, Australia during February and March 2010. Cyanobacterial-infested water was released and contaminated rivers downstream. River flow velocities were sufficiently high that in-stream bloom development was unlikely. The location has a temperate climate but experienced drought in 2010, causing river flows that were well below the long-term median values. This coupled with very low bed gradients meant turbulence was insufficient to destroy the cyanobacteria in-stream. Blooms in the upper 500 km of the Murray and Edward Rivers persisted for 5 weeks, but in the mid and lower Murray blooms were confined to a small package of water that moved progressively downstream for another 650 km. Anabaena circinalis was the dominant species present, confirmed by 16S rRNA gene sequencing, but other potentially toxic species were also present in smaller amounts. Saxitoxin (sxtA), microcystin (mcyE) and cylindrospermopsin (aoaA) biosynthesis genes were also detected, although water sample analysis rarely detected these toxins. River water temperature and nutrient concentrations were optimal for bloom survival. The operational design of weirs and retention times within weir pools, as well as tributary inflows to and diversions from the Murray River all influenced the distribution and persistence of the blooms. Similar flow, water quality and river regulation factors were underlying causes of another bloom in these rivers in 2009. Global climate change is likely to promote future blooms in this and other lowland rivers.  相似文献   

16.
In the lower St. Lawrence estuary (LSLE, eastern Canada), blooms of the toxic dinoflagellate Alexandrium tamarense are a recurrent phenomenon, resulting in paralytic shellfish poisoning outbreaks every summer. A first coupled physical–biological model of A. tamarense blooms was developed for this system in order to explore the interactions between cyst germination, cellular growth and water circulation and to identify the effect of physical processes on bloom development and transport across the estuary. The simulated summer (1998) was characterized by an A. tamarense red tide with concentrations reaching 2.3 × 106 cells L−1 along the south shore of the LSLE. The biological model was built with previously observed A. tamarense cyst distribution, cyst germination rate and timing, and A. tamarense growth limitation by temperature and salinity. The coupled model successfully reproduced the timing of the A. tamarense bloom in 1998, its coincidence with the combined plumes from the Manicouagan and Aux-Outardes (M-O) rivers on the north shore of the estuary, and the temporal variations in the north-south gradients in cell concentrations. The simulation results reveal that the interaction between cyst germination and the estuarine circulation generates a preferential inoculation of the surface waters of the M-O river plume with newly germinated cells which could partly explain the coincidence of the blooms with the freshwater plume. Furthermore, the results suggest that the spatio-temporal evolution of the bloom is dominated by alternating periods of retention and advection of the M-O plume: east or north-east winds favor the retention of the plume close to the north shore while west or north-west winds result in its advection toward the south shore. The response of the simulated freshwater plume to fluctuating wind forcing controls the delivery of the A. tamarense bloom from the northern part of the estuary to the south shore. In addition, our results suggest that a long residence time of the M-O plume and associated A. tamarense population in the LSLE during the summer 1998 contributed to the development of the red tide. We thus hypothesize that the wind-driven dynamics of the M-O plume could partly determine the success of A. tamarense blooms in the LSLE by influencing the residence time of the blooms and water column stability, which in turn affects A. tamarense vertical migrations and growth.  相似文献   

17.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

18.
The spatial-temporal distribution of a dinoflagellate bloom dominated or co-dominated by Prorocentrum minimum was examined during autumn through early spring in a warm temperate, eutrophic estuary. The developing bloom was first detected from a web-based alert provided by a network of real-time remote monitoring (RTRM) platforms indicating elevated dissolved oxygen and pH levels in upper reaches of the estuary. RTRM data were used to augment shipboard sampling, allowing for an in-depth characterization of bloom initiation, development, movement, and dissipation. Prolonged drought conditions leading to elevated salinities, and relatively high nutrient concentrations from upstream inputs and other sources, likely pre-disposed the upper estuary for bloom development. Over a 7-month period (October 2001–April 2002), the bloom moved toward the northern shore of the mesohaline estuary, intensified under favorable conditions, and finally dissipated after a major storm. Bloom location and transport were influenced by prevailing wind structure and periods of elevated rainfall. Chlorophyll a within bloom areas averaged 106 ± 13 μg L−1 (mean ± 1 S.E.; maximum, 803 μg L−1), in comparison to 20 ± 1 μg L−1 outside the bloom. There were significant positive relationships between dinoflagellate abundance and TN and TP. Ammonium, NO3, and SRP concentrations did not decrease within the main bloom, suggesting that upstream inputs and other sources provided nutrient-replete conditions. In addition, PAM fluorometric measurements (09:00–13:00 h) of maximal PSII quantum yield (Fv/Fm) were consistently 0.6–0.8 within the bloom until late March, providing little evidence of photo-physiological stress as would have been expected under nutrient-limiting conditions. Nitrogen uptake kinetics were estimated for P. minimum during the period when that species was dominant (October–December 2001), based on literature values for N uptake by an earlier P. minimum bloom (winter 1999) in the Neuse Estuary. The analysis suggests that NH4+ was the major N species that supported the bloom. Considering the chlorophyll a concentrations during October and December and the estimated N uptake rates, phytoplankton biomass was estimated to have doubled once per day. Bloom displacement (January–February) coincided with higher diversity of heterotrophic dinoflagellate species as P. minimum abundance decreased. This research shows the value of RTRM in bloom detection and tracking, and advances understanding of dinoflagellate bloom dynamics in eutrophic estuaries.  相似文献   

19.
The toxic benthic dinoflagellate genus Ostreopsis has been connected to the production of palytoxin and its analogs in many tropical and temperate areas. Although the type species, O. siamensis, was originally described from the Gulf of Thailand in 1901, little is known about the species composition and distribution of the genus Ostreopsis in Thailand. In this study, a total of 64 Ostreopsis strains isolated from the Andaman Sea as well as the Gulf of Thailand were investigated by analyzing the nucleotide sequences of the LSU rDNA D1/D2, D8/D10 and ITS-5.8S rDNA regions. Phylogenetic analyses (BI and ML) resulted in some of the strains being assigned to previously described clades, O. cf. ovata and Ostreopsis sp. 6, and revealed the existence of a novel clade named Ostreopsis sp. 7, which exhibited large genetic distances from the other clades. Among O. cf. ovata, several strains from Thailand were formed into a new subclade, the Thailand subclade, whereas a few strains belonged to the South China Sea subclade. Morphometric characteristics such as the cell sizes of the two O. cf. ovata subclades and those of Ostreopsis sp. 7 were not significantly different from each other (p > 0.05). Their characteristics were similar but slightly different from those of O. ovata and were significantly different from those of Ostreopsis sp. 6 (p < 0.05). Toxicities of Ostreopsis from Thailand were evaluated using mouse bioassay. Strains of Ostreopsis sp. 6 and Ostreopsis sp. 7 tested were highly toxic, while the two subclades of O. cf. ovata strains seemed to be nontoxic. This study suggests that toxic Ostreopsis sp. 7 is distributed in the Andaman Sea, whereas the two subclades of O. cf. ovata and toxic Ostreopsis sp. 6 are distributed in the Gulf of Thailand.  相似文献   

20.
The cosmopolitan dinoflagellate Prorocentrum minimum is a recurrent bloom forming species in the Chesapeake Bay and its tributaries, generally observed at its highest levels in late spring and summer. Laboratory studies were conducted to assess potential bloom impacts on diel oxygen concentrations in shallow littoral zones as well as settlement success and post-set growth of the eastern oyster Crassostrea virginica. Using light–dark and dark cultures and periodic diel sub-sampling, bloom levels of P. minimum produced supersaturated oxygen levels at the end of each day while darkened cultures were typified by rapid decreases in dissolved oxygen (DO) (1.1–1.3 mg L−1 h−1) to hypoxic and anoxic levels within 4 days. These data suggest shallow, poorly flushed systems and the biota in them will experience rapid and large diel variations in oxygen, implying recurrent P. minimum blooms need be considered as short-term oxygen stressors for Bay oyster spat and other living resources. Direct effects of P. minimum impacts on oysters were not as expected or previously reported. In one experiment, pre-bloom isolates of P. minimum were grown and then exposed to polyvinyl chloride (PVC) settlement plates to see whether dinoflagellate preconditioning of the hard substrate might affect oyster sets. No differences were noted between set on the PVC with P. minimum exposure to set recorded with filtered seawater, Instant Ocean®, or Isochrysis. In the second oyster experiment, spat on PVC plates were exposed to field collected P. minimum blooms and a commercial mixture of several other food types including Isochrysis. Oyster growth was significantly higher in P. minimum exposures than noted in the commercial mix. These results, compared to results with other isolates from the same region, indicate substantial positive impact from some of the P. minimum blooms of the area while others separated in space, time, or nutrient status could severely curtail oyster success through toxin production induced by nutrient limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号