首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
—RNA metabolism in isolated brain nuclei has been shown to be dramatically altered during early postnatal brain development. The present study involved an examination of the RNA products synthesized by nuclei at various stages of postnatal neural maturation. In all cases, the majority of the RNA appeared to be heterodisperse, non-ribosomal and non-tRNA in nature. In comparison to the RNA isolated from nuclei of neonatal tissue, the RNA from nuclei of 12-day and 30-day-old mouse brain was found to be of smaller molecular weight. Despite the heterodisperse nature of these RNA molecules, the addition of α-amanitin did not completely inhibit nuclear synthesis. An investigation of RNA synthesis in isolated neuronal and glial cell nuclei revealed that nucleic acid metabolism in these respective cell populations had different and distinct developmental patterns. Preparations enriched with glial cell nuclei were found to be most active at birth and then decreased in activity (3–4-fold) during neural maturation. On the other hand, the rate of RNA synthesis in fractions enriched in neuronal cell nuclei was observed to increase dramatically in activity (4–5-fold) until 14 days of age. From 14 days of age until adulthood, RNA synthetic activity remained essentially the same.  相似文献   

2.
1. Various types of nuclear preparations, with different ratios of neuronal to glial nuclei, were isolated from guinea-pig cerebral grey matter and ox cerebral grey matter and white matter. Conditions appropriate for the separate assay of RNA and poly A formation were described. Comparative rates of RNA and poly A formation were studied in cerebral and liver nuclei. 2. RNA polymerase activity per nucleus is higher in neuronal nuclei than in glial nuclei. In liver nuclei, the activity is much lower than in cerebral nuclei. The physical relationship between RNA polymerase and deoxyribonucleoprotein seems to differ in neuronal, glial and liver nuclei. 3. Poly A polymerase activity in liver nuclei is selectively activated by Mn(2+) and inhibited by GTP, CTP and UTP. On a DNA basis, the activity in an aggregate enzyme is the same as in intact nuclei. Poly A polymerase activity per nucleus is much higher in liver nuclei than in neuronal nuclei. Glial nuclei show an intermediate activity. 4. It is suggested that, in neuronal nuclei, the synthesis of RNA is more prominent than that of poly A under conditions where both polymers are formed simultaneously. This contrasts with liver nuclei, where more poly A is made than RNA. 5. In neuronal nuclei, the rate of CTP incorporation is much higher than in glial and liver nuclei. This incorporation is most probably due to poly C synthesis.  相似文献   

3.
4.
RNA synthesis in rat cerebral hemispheres at 1, 5, and 10 days of age and the relative contribution brought by neuronal and glial nuclei to RNA synthesis was investigated. The experiments were carried out both in vivo (by i.p. injection of [3H]uridine) and in vitro (either by incubation of tissue slices with [3H]uridine or by determination of RNA polymerase activities). The labeling of RNA decreases from 1 to 10 days of age both in vivo and in vitro; the decrease is of the same extent in neuronal and glial nuclei. RNA polymerase activity Mg2+-dependent does not change significantly from 1 to 10 days of age either in total, in neuronal, or in glial nuclei, whereas the Mn2+-dependent activity increases significantly over the same developmental period studied. The significance of RNA polymerase assay as an index of in vivo RNA synthesis is discussed.  相似文献   

5.
6.
The process of methylation of chromosomal proteins [histones and nonhistone proteins (NHP)] in neuronal and glial cell nuclei obtained from cerebral hemispheres of rats at 1, 10, and 30 days of age was investigated. Purified neuronal and glial nuclei were incubated in the presence of S-adenosyl[methyl-3H]methionine. Histone and NHPs were extracted and fractionated by polyacrylamide gel electrophoresis. The results obtained indicate remarkable differences in the process of methylation of histones and NHPs between neuronal and glial nuclei, especially during the first period of postnatal development. In both nuclear populations the histone fraction H3 was labeled to a greater degree than the other fractions and showed the major changes during postnatal development. The densitometric and radioactive patterns of NHPs show considerable changes in the two nuclear populations at the various ages examined. The main difference between neuronal and glial nuclei consists in the intense methylation of proteins with a molecular weight of approximately 100,000, which are present in neuronal nuclei and virtually absent in glial ones. The results obtained may be correlated with the different chromatin structures of neuronal and glial nuclei and with the patterns of maturation and differentiation of neuronal and glial cells during postnatal development.  相似文献   

7.
Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei are both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brings estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells.  相似文献   

8.
9.
10.
SYNTHESIS OF NUCLEAR RNA IN NERVE AND GLIAL CELLS   总被引:5,自引:2,他引:3  
—Tritium-labelled RNA precursors were injected at 30 min intervals into the fourth ventricle of rats or rabbits. After 4 h the nuclei from neurones, astrocytes, and other glial cells were isolated and RNA extracted. Investigations were performed in order to establish optimum conditions for RNA extraction from this particular material. The sedimentation patterns obtained in sucrose gradients were similar to those of nuclear RNA from other mammalian tissues and showed the presence of RNA species with high specific activities in the region of the gradient between 10S and 16S and above 28S. All three types of nuclei contained a 45S and a 38S RNA. Moreover, a 32S component could be identified in astrocytic nuclei, a 35S fraction in neuronal nuclei, and both a 32S and 35S RNA in nuclei from glial cells. The nuclei from the various cell types also differ with respect to the rate of incorporation of the label into the nuclear RNA, being four times higher in astrocytic and neuronal nuclei than in those derived from the other glial cells.  相似文献   

11.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

12.
In a basic approach to investigations of neuronal–glial interactions during both normal brain development and its pathogenesis, embryonic brain cell populations were fractionated into purified neuronal and glial components. Using separation procedures based on differential adhesion and cytotoxicity, the isolated neuronal and glial phenotypes could be identified by distinct morphological and biochemical characteristics, including the visualization of glial fibrillary acid protein (GFA) within glial cells in immunohistochemical assays with monospecific anti-GFA serum. When unfractionated cerebrum cells dissociated from 10-day chick or 14-day mouse embryos were plated as monolayers and cultured for 1-14 days, monospecific antiserum against fibronectin (LETS glycoprotein) was found to react with many, but not all, of the cells as revealed by indirect immunofluorescence microscopy. The isolated neuronal and glial components of these populations were used to determine whether the appearance of membrane-associated fibronectin was characteristic of one cell type or the other, or both, and if neuronal–glial cell interaction was required for its expression. It was found that the surfaces of glial cells, completely isolated from neurons, showed an intense fluorescent reaction to the anti-fibronectin serum. In contrast, the purified neuronal cultures showed no fluorescence with either the anti-GFA or anti-fibronectin sera. These results demonstrate fibronectin as a cell surface protein associated primarily with glial cells and independent of neuronal–glial cell interaction for its expression. Furthermore, the results indicate that the fibronectin observed on glial cell surfaces in these cultures is produced endogenously and is not due to the preferential binding of fibronectin present in the culture medium. The role of fibronectin as an adhesive molecule in neuronal–glial interactions is discussed.  相似文献   

13.
Two different preparations isolated from beef cerebrum have been used to compare the polyadenosine diphosphate ribose (polyADPR) polymerase activities in neuronal and glial nuclei: (1) nuclear suspensions (with or without DNase I treatment), and (2) 1 M NaCl nuclear extracts (soluble enzyme). The DNAse I treatment of nuclei and the solubilization of polyADPR polymerase by 1 M NaCl enhances the polyADPR polymerase activity. The polyADPR polymerase activity is similar in neuronal and glial nuclear suspensions, while the neuronal soluble enzyme activity is significantly higher than that of the glial soluble enzyme. Evidence is presented that the difference in soluble enzyme activities is not due to the effects of DNA or degrading enzymes. Some activating factor(s) seem to be present in neuronal soluble extracts, while both inhibiting and activating factor(s) seem to be present in glial soluble extracts.  相似文献   

14.
Isolated nuclei from sea urchin embryos synthesize RNA at a rate comparable to other animal cell nuclei. All three RNA polymerases are active as judged by alpha-amanitin sensitivity and hybridization to specific cloned DNAs. Extracts were prepared from sea urchin eggs and embryos by extraction with 0.35 M KCl. None of the crude extracts had a large effect on total RNA synthesis. However, extracts from sea urchin eggs inhibited RNA polymerase III activity in nuclei from blastula and gastrula embryos. There was no effect on the synthesis of ribosomal RNA by RNA polymerase I or on the synthesis of two RNA polymerase II products, histone mRNA and the sea urchin analogue of U1 RNA. The inhibitor is present in two different species of sea urchin and has been 50-fold purified by diethylaminoethylcellulose and hydroxylapatite chromatography. The inhibitor is not present in extracts prepared from sea urchin blastula embryos.  相似文献   

15.
Enzymes involved in the synthesis of cerebrosides and sulphatides were assayed in cultured cells of neuronal and glial origin and their activity compared to that found in analogous fractions prepared from chicken brain. High activity was observed for both enzymes in chicken neuronal and glial fractions. However ceramide galactosyltransferase could not be detected in normal glial cells or neuroblastoma cells. A very low activity was found in the glioblastoma cells. Although sulphotransferase was absent from normal glial cells, a notable activity was found in glioblastoma or neuroblastoma cells.  相似文献   

16.
The present study deals with the distribution of adenosine triphosphatase and 5'-nucleotidase in the various constituents of thoracic ganglia and associated nerve of Periplaneta americana. The localization of both the enzymes in the thoracic ganglia is identical. The neural lamella is devoid of any activity for both the enzymes. The ganglion cells are intensely positive at their borders. The neuronal cell surface and/or glial cell processes which envelope the neurons show intense activity for these enzymes. Adenosine triphosphatase and 5'-nucleotidase are present around "giant fibres" and small axons. The activity appears to confine itself in the sheaths. The cytoplasm and the nuclei of the neurons are devoid of enzymatic activity, whereas the nucleoli are slightly active. The nerves are positive for both the enzymes. The role of these enzymes at different sites has also been discussed.  相似文献   

17.
Isolated HeLa cell nuclei are capable of synthesizing 5S and pre-4S RNA. The labeling of these low molecular weight species has been compared with the labeling of nucleolar RNA and nuclear heterogeneous RNA. The 5S and pre-4S RNA molecules made in vitro were identified by their mobility on SDS acrylamide gels and by the sensitivity of pre-4S RNA to enzymes which cleave it in vitro to 4S RNA. Their mobilities and cleavage properties are similar to the RNA made in vivo. Unlike the nuclear heterogeneous RNA, the synthesis of the two small molecular weight RNAs is resistant to α-amanitin.A large proportion of 4S RNA labeled in vitro appears to be formed de novo. The ratio of the terminal uridine to the internal uridine 3′-monophosphate remains constant with time, even though there is linear incorporation into the pre-4S RNA in the isolated nuclei.Production of the nucleolar RNA and pre-4S RNA has been compared in the presence of various ions. The pre-4S RNA synthesis has a sharper maximum for (NH4)SO4 and MgCl2 than does the synthesis of nucleolar RNA. The in vitro synthesis of pre-4S is more sensitive to ellipticine and pCMB than the production of nucleolar RNA. These differences between the production of pre-4S RNA and nucleolar RNA are discussed with respect to in vitro reinitiation and the possibility that different polymerases are involved in their synthesis.  相似文献   

18.
Abstract– The method of T hompson (1973) for isolation and fractionation of brain nuclei was modified by the introduction of 12mM-Mg2+ in the isolating media. This technique gives a good yield of pure (85-90%) neuronal and glial rat brain nuclei, with minimal disruption of nuclei and degradation or processing of nuclear RNA. The RNA/DNA ratio of neuronal nuclei is about 3-fold higher than that of glial nuclei. Analysis of nucleolar RNA fractions by urea-agar gel electrophoresis allows the identification of 45S, 41S, 39S, 36S, 32S and 21S pre-rRNA components. The pattern of nucleolar pre-rRNA and rRNA species in neuronal and glial nuclei is identical. These results demonstrate the existence in brain nuclei of multiple pre-rRNA processing pathways qualitatively similar to those observed in other animal tissues.  相似文献   

19.
Distribution of the mixed function oxidases (MFO's) catalyzed by presence of multiple forms of cytochrome P-450 (P-450) was investigated in the neuronal and glial cells of the brain. The neuronal cells exhibited 2-3 fold higher activity of P-450 dependent arylhydrocarbon hydroxylase (AHH), 7-ethoxycoumarin-o-deethylase (ECOD) and 7-ethoxy-resorufn-o-deethylase (EROD) than the glial cells. Pretreatment with phenobarbital (PB) significantly increased (60-85%) the activity of ECOD in neuronal and glial cells, while a 140% increase was observed in neuronal AHH activity. Exposure to 3-methylcholanthrene (MC) resulted in a significant induction of the activity of AHH (102-345%), ECOD (115-150%) and EROD (75-120%) in the neuronal and glial cell preparations. The neurons, in general, exhibited greater sensitivity towards PB and MC induction. The present data indicate the differential sensitivity of these enzymes in neuronal and glial cells which could be used as a model to understand the selective action of certain neurotoxic agents.  相似文献   

20.
The nuclear poly(ADP-ribose)polymerase activity of neuronal and glial cells during postnatal development of rats was studied. It was shown that the poly(ADP-ribose)polymerase activity of nuclei and nuclear matrix of neuronal cells during postnatal development of rats is increased, whereas the polymerase activity of glial cell nuclei and nuclear matrix in newborn and adult rats is higher than in 14-day-old animals. The DNA-topoisomerase II activity of neuronal nuclear matrix during the postnatal development of rats does not change, whereas the topoisomerase activity of glial nuclear matrix decreases but is always higher than the DNA-topoisomerase II activity of neuronal cell matrix during the postnatal development of rats. It is suggested that ADP-ribosylation in the nuclear matrix of neuronal cells causes the inhibition of the DNA-topoisomerase II activity of nuclear matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号