首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in SCN5A, the gene encoding the pore-forming subunit of cardiac Na(+) channels, cause a spectrum of arrhythmic syndromes. Of these, sinoatrial node (SAN) dysfunction occurs in patients with both loss- and gain-of-function SCN5A mutations. We explored for corresponding alterations in SAN function and intracardiac conduction and clarified possible mechanisms underlying these in an established mouse long QT syndrome type 3 model carrying a mutation equivalent to human SCN5A-ΔKPQ. Electrophysiological characterizations of SAN function in living animals and in vitro sinoatrial preparations were compared with cellular SAN and two-dimensional tissue models exploring the consequences of Scn5a+/ΔKPQ mutations. Scn5a+/ΔKPQ mice showed prolonged electrocardiographic QT and corrected QT intervals confirming long QT phenotypes. They showed frequent episodes of sinus bradycardia, sinus pause/arrest, and significantly longer sinus node recovery times, suggesting compromised pacemaker activity compared with wild-type mice. Electrocardiographic waveforms suggested depressed intra-atrial, atrioventricular node, and intraventricular conduction in Scn5a+/ΔKPQ mice. Isolated Scn5a+/ΔKPQ sinoatrial preparations similarly showed lower mean intrinsic heart rates and overall slower conduction through the SAN to the surrounding atrium than did wild-type preparations. Computer simulations of both single SAN cells as well as two-dimensional SAN-atrial models could reproduce the experimental observations of impaired pacemaker and sinoatrial conduction in terms of changes produced by both augmented tail and reduced total Na(+) currents, respectively. In conclusion, the gain-of-function long QT syndrome type 3 murine Scn5a+/ΔKPQ cardiac system, in overlap with corresponding features reported in loss-of-function Na(+) channel mutations, shows compromised SAN pacemaker and conduction function explicable in modeling studies through a combination of augmented tail and reduced peak Na(+) currents.  相似文献   

2.
Genetic Na channelopathies and sinus node dysfunction   总被引:1,自引:1,他引:0  
Voltage-gated Na+ channels are transmembrane proteins that produce the fast inward Na+ current responsible for the depolarization phase of the cardiac action potential. They play fundamental roles in the initiation, propagation, and maintenance of normal cardiac rhythm. Inherited mutations in SCN5A, the gene encoding the pore-forming α-subunit of the cardiac-type Na+ channel, result in a spectrum of disease entities termed Na+ channelopathies. These include multiple arrhythmic syndromes, such as the long QT syndrome type 3 (LQT3), Brugada syndrome (BrS), an inherited cardiac conduction defect (CCD), sudden infant death syndrome (SIDS) and sick sinus syndrome (SSS). To date, mutational analyses have revealed more than 200 distinct mutations in SCN5A, of which at least 20 mutations are associated with sinus node dysfunction including SSS. This review summarizes recent findings bearing upon: (i) the functional role of distinct voltage-gated Na+ currents in sino-atrial node pacemaker function; (ii) genetic Na+ channelopathy and its relationship to sinus node dysfunction.  相似文献   

3.
心室再同步心脏转复除颤器(CRT)可有效改善心力衰竭(CHF)患者的运动耐量和生活质量,预防猝死,提高生存率,但_DCHFCRTD植入后由于心室激动顺序的改变,使QT间期延长、跨室壁复极离散度(TDR)增加,潜在致室性心律失常风险;且CHF患者通常存在心肌解剖改变,传导的不均一性,也为折返性心动过速的发生提供了维持的机制;而多次电击也可导致肌钙蛋白升高,引起心肌损伤,局部心肌复极离散度增加(DRVR)和QT间期延长,以及电除颤后心肌纤维化和急性细胞损伤,反复室速、室颤也会引起进行性左心功能不全、心肌细胞凋亡、恶化心律失常基质和增加心律失常易感性。CRT_D潜在致室性心律失常作用逐渐引起人们的重视,本文就近年来CRTD致室性心律失常的电生理机制与临床防治对策等做一综述。  相似文献   

4.
The long QT syndrome (LQTS) is a monogenic disorder characterized by prolongation of the QT interval on electrocardiogram and syncope or sudden death caused by polymorphic ventricular tachycardia (torsades de pointes). In general, mutations in cardiac ion channel genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2) have been identified as a cause for LQTS. About 50-60 % of LQTS patients have an identifiable LQTS causing mutation in one of mentioned genes. In a group of 12 LQTS patients with no identified mutations in these genes we have tested a hypothesis that other candidate genes could be involved in LQTS pathophysiology. SCN1B and KCND3 genes encode ion channel proteins, ANK2 gene encodes cytoskeletal protein interacting with ion channels. To screen coding regions of genes SCN1B, KCND3, and 10 exons of ANK2 following methods were used: PCR, SSCP, and DNA sequencing. Five polymorphisms were found in screened candidate genes, 2 polymorphisms in KCND3 and 3 in SCN1B. None of found polymorphisms has coding effect nor is located close to splice sites or has any similarity to known splicing enhancer motifs. Polymorphism G246T in SCN1B is a novel one. No mutation directly causing LQTS was found. Molecular mechanism of LQTS genesis in these patients remains unclear.  相似文献   

5.
Verapamil was administered by intravenous injection to 181 patients with various cardiac arrhythmias. The automaticity of the cardiac pacemaker was slowed in sinus, idionodal, and idioventricular tachycardia. In atrial fibrillation the drug usually slowed the ventricular response and often made it regular. In some cases atrial flutter was converted to sinus rhythm, the ventricular response being reduced in the remainder. Conversion of paroxysmal supraventricular tachycardia to sinus rhythm was consistently achieved. A favourable response occurred in four patients in whom arrhythmias were associated with pre-excitation syndromes. There were no adverse clinical side effects.  相似文献   

6.
Elucidation of the cellular basis of arrhythmias in ion channelopathy disorders is complicated by the inherent difficulties in studying human cardiac tissue. Thus we used a computer modeling approach to study the mechanisms of cellular dysfunction induced by mutations in inward rectifier potassium channel (K(ir))2.1 that cause Andersen-Tawil syndrome (ATS). ATS is an autosomal dominant disorder associated with ventricular arrhythmias that uncommonly degenerate into the lethal arrhythmia torsade de pointes. We simulated the cellular and tissue effects of a potent disease-causing mutation D71V K(ir)2.1 with mathematical models of human ventricular myocytes and a bidomain model of transmural conduction. The D71V K(ir)2.1 mutation caused significant action potential duration prolongation in subendocardial, midmyocardial, and subepicardial myocytes but did not significantly increase transmural dispersion of repolarization. Simulations of the D71V mutation at shorter cycle lengths induced stable action potential alternans in midmyocardial, but not subendocardial or subepicardial cells. The action potential alternans was manifested as an abbreviated QRS complex in the transmural ECG, the result of action potential propagation failure in the midmyocardial tissue. In addition, our simulations of D71V mutation recapitulate several key ECG features of ATS, including QT prolongation, T-wave flattening, and QRS widening. Thus our modeling approach faithfully recapitulates several features of ATS and provides a mechanistic explanation for the low frequency of torsade de pointes arrhythmia in ATS.  相似文献   

7.
Electrocardiographic QT interval prolongation or shortening is a risk factor for sudden cardiac death. The study of Mendelian syndromes in families with extreme long and short QT interval duration and ventricular arrhythmias has led to the identification of genes encoding ion channel proteins important in myocardial repolarization. Rare mutations in such ion channel genes do not individually contribute substantially to the population burden of ventricular arrhythmias and sudden cardiac death. Only now are studies systematically testing the relationship between common variants in these genes--or elsewhere in the genome--and QT interval variation and sudden cardiac death. Identification of genetic variation underlying myocardial repolarization could have important implications for the prevention of both sporadic and drug-induced arrhythmias.  相似文献   

8.
Mutations in SCN5A lead to a broad spectrum of phenotypes, including the Long QT syndrome, Brugada syndrome, Idiopathic ventricular fibrillation (IVF), Sudden infant death syndrome (SIDS) (probably regarded as a form of LQT3), Sudden unexplained nocturnal death syndrome (SUNDS) and isolated progressive cardiac conduction defect (PCCD) (Lev-Lenegre disease). Brugada Syndrome (BS) is a form of idiopathic ventricular fibrillation characterized by the right bundle-branch block pattern and ST elevation (STE) in the right precordial leads of the ECG. Mutations of the cardiac sodium channel SCN5A cause the disorder, and an implantable cardioverter-defibrillator is often recommended for affected individuals. In this study sequences of the coding region of the SCN5A gene were analysed in patients with the LQT3, Brugada Syndrome and other arrythmogenic disorders. Different mSSCP patterns are described with no disease-related SSCP conformers in any sample. Direct sequencing of the SCN5A gene confirmed the absence of mutations. This suggests that the analysed region of the SCN5A gene is not commonly involved in the pathogenesis of the Brugada Syndrome and associated disorders.  相似文献   

9.
The risk for lethal ventricular arrhythmias is increased in individuals who carry mutations in genes that encode cardiac ion channels. Loss-of-function mutations in SCN5A, the gene encoding the cardiac sodium channel, are linked to Brugada syndrome (BrS). Arrhythmias in BrS are often preceded by coved-type ST-segment elevation in the right-precordial leads V1 and V2. Loss-of-function mutations in KCNH2, the gene encoding the cardiac ion channel that is responsible for the rapidly activating delayed rectifying potassium current, are linked to long-QT syndrome type 2 (LQT-2). LQT-2 is characterised by delayed cardiac repolarisation and rate-corrected QT interval (QTc) prolongation. Here, we report that the risk for ventricular arrhythmias in BrS and LQT-2 is further increased during fever. Moreover, we demonstrate that fever may aggravate coved-type ST-segment elevation in BrS, and cause QTc lengthening in LQT-2. Finally, we describe molecular mechanisms that may underlie the proarrhythmic effects of fever in BrS and LQT-2. (Neth Heart J 2010;18:165-9.)  相似文献   

10.
Xiao YF  Sigg DC 《生理学报》2007,59(5):562-570
正常人的心脏节律源于右心房的天然起搏点(pacemaker)——窦房结。窦房结的功能异常或者房室传导阻滞会导致心率异常(如心律缓慢)。治疗严重的心动过缓需要植入在技术上已经相当成熟的电子起搏器,但这种治疗存在一些缺陷和不足。近年来,在动物实验模型中应用基因或细胞来重建心脏的生物起搏点已经取得了进展。超极化活化环核苷酸门控(hyperpolarization-activated cyclic-nucleotide-modulated,HCN)通道(起搏通道)通过超极化活化的阳离子电流(hyperpolarization-activated cation current,It)调制心脏的自律性。利用病毒载体或转染HCN基因的细胞将HCN基因导入动物心脏内可重建生物起搏点。也有导入其它基因或植入自律细胞来探索心脏起搏点的重建。本文总结了重建心脏生物起搏点的一些研究进展。一旦稳定性和寿命等关键问题得到相应解决,遗传工程改造的生物起搏点可用于治疗严重的心动过缓。  相似文献   

11.
Cardiac Na(+) channels encoded by the SCN5A gene are essential for initiating heart beats and maintaining a regular heart rhythm. Mutations in these channels have recently been associated with atrial fibrillation, ventricular arrhythmias, conduction disorders, and dilated cardiomyopathy (DCM).We investigated a young male patient with a mixed phenotype composed of documented conduction disorder, atrial flutter, and ventricular tachycardia associated with DCM. Further family screening revealed DCM in the patient's mother and sister and in three of the mother's sisters. Because of the complex clinical phenotypes, we screened SCN5A and identified a novel mutation, R219H, which is located on a highly conserved region on the fourth helix of the voltage sensor domain of Na(v)1.5. Three family members with DCM carried the R219H mutation.The wild-type (WT) and mutant Na(+) channels were expressed in a heterologous expression system, and intracellular pH (pHi) was measured using a pH-sensitive electrode. The biophysical characterization of the mutant channel revealed an unexpected selective proton leak with no effect on its biophysical properties. The H(+) leak through the mutated Na(v)1.5 channel was not related to the Na(+) permeation pathway but occurred through an alternative pore, most probably a proton wire on the voltage sensor domain.We propose that acidification of cardiac myocytes and/or downstream events may cause the DCM phenotype and other electrical problems in affected family members. The identification of this clinically significant H(+) leak may lead to the development of more targeted treatments.  相似文献   

12.
Deletion of amino-acid residues 1505-1507 (KPQ) in the cardiac SCN5A Na(+) channel causes autosomal dominant prolongation of the electrocardiographic QT interval (long-QT syndrome type 3 or LQT3). Excessive prolongation of the action potential at low heart rates predisposes individuals with LQT3 to fatal arrhythmias, typically at rest or during sleep. Here we report that mice heterozygous for a knock-in KPQ-deletion (SCN5A(Delta/+)) show the essential LQT3 features and spontaneously develop life-threatening polymorphous ventricular arrhythmias. Unexpectedly, sudden accelerations in heart rate or premature beats caused lengthening of the action potential with early afterdepolarization and triggered arrhythmias in Scn5a(Delta/+) mice. Adrenergic agonists normalized the response to rate acceleration in vitro and suppressed arrhythmias upon premature stimulation in vivo. These results show the possible risk of sudden heart-rate accelerations. The Scn5a(Delta/+) mouse with its predisposition for pacing-induced arrhythmia might be useful for the development of new treatments for the LQT3 syndrome.  相似文献   

13.
Various types of nervous system diseases have been associated with QT prolongation and ventricular arrhythmias. This report describes a young woman with a pituitary tumor, who had QT prolongation and recurrent syncope secondary to ventricular fibrillation. Effective therapy with digoxin and propranolol are described, and pathophysiology of the syndrome is discussed.  相似文献   

14.
The Short QT Syndrome is a recently described new genetic disorder, characterized by abnormally short QT interval, paroxysmal atrial fibrillation and life threatening ventricular arrhythmias. This autosomal dominant syndrome can afflict infants, children, or young adults; often a remarkable family background of cardiac sudden death is elucidated. At electrophysiological study, short atrial and ventricular refractory periods are found, with atrial fibrillation and polymorphic ventricular tachycardia easily induced by programmed electrical stimulation. Gain of function mutations in three genes encoding K+ channels have been identified, explaining the abbreviated repolarization seen in this condition: KCNH2 for Ikr (SQT1), KCNQ1 for Iks (SQT2) and KCNJ2 for Ik1 (SQT3). The currently suggested therapeutic strategy is an ICD implantation, although many concerns exist for asymptomatic patients, especially in pediatric age. Pharmacological treatment is still under evaluation; quinidine has shown to prolong QT and reduce the inducibility of ventricular arrhythmias, but awaits additional confirmatory clinical data.  相似文献   

15.
The human Ether-a-go-go Related Gene (hERG) potassium channel plays a central role in regulating cardiac excitability and maintenance of normal cardiac rhythm. Mutations in hERG cause a third of all cases of congenital long QT syndrome, a disorder of cardiac repolarisation characterised by prolongation of the QT interval on the surface electrocardiogram, abnormal T waves, and a risk of sudden cardiac death due to ventricular arrhythmias. Additionally, the hERG channel protein is the molecular target for almost all drugs that cause the acquired form of long QT syndrome. Advances in understanding the structural basis of hERG gating, its traffic to the cell surface, and the molecular architecture involved in drug-block of hERG, are providing the foundation for rational treatment and prevention of hERG associated long QT syndrome. This review summarises the current knowledge of hERG function and dysfunction, and the areas of ongoing research.  相似文献   

16.
Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG. The mutant subunit was expressed and functionally characterised in the Xenopus oocyte expression system. A novel heterozygous missense mutation with a C to T transition at the first position of codon 343 (CCA) of the KCNQ1 gene was identified in three concerned family members (QTc intervals: 500, 510 and 530 ms, respectively). As a result, proline 343 localised within the highly conserved transmembrane segment S6 of the KCNQ1 channel is replaced by a serine. Co-expression of mutant (KCNQ1-P343S) and wild-type (KCNQ1) cRNA in Xenopus oocytes produced potassium currents reduced by approximately 92%, while IKs reconstitution experiments with a combination of KCNQ1 mutant, wild-type and KCNE1 subunits yielded currents reduced by approximately 60%. A novel mutation (P343S) identified in the KCNQ1 subunit gene of three members of a RWS family showed a dominant-negative effect on native IKs currents leading to prolongation of the heart repolarisation and possibly increases the risk of malign arrhythmias with sudden cardiac death.  相似文献   

17.
Upper venous system anatomic variations may cause difficulties during cardiac pacemaker implantation. Persistent left superior vena cava (PLSVC) and absent right superior vena cava could be an arrhythmogenic source of atrial arrhythmias and cardiac conduction disease. We represent dual-chamber pacemaker implantation in a patient with a very rare upper venous system anomaly, paroxysmal atrial fibrillation, sick sinus syndrome, that cause unusual fluoroscopic image.  相似文献   

18.
MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes   总被引:19,自引:0,他引:19  
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function. To evaluate the effect of MiRP1 on HCN expression and function in a physiological context, we used an adenovirus approach to overexpress a hemagglutinin (HA)-tagged MiRP1 (HAMiRP1) and HCN2 in neonatal rat ventricular myocytes, a cell type that expresses both MiRP1 and HCN2 message at low levels. HA-MiRP1 co-expression with HCN2 resulted in a 4-fold increase in maximal conductance of pacemaker currents compared with HCN2 expression alone. HCN2 activation and deactivation kinetics also changed, being significantly more rapid for voltages between -60 and -95 mV when HA-MiRP1 was co-expressed with HCN2. However, the voltage dependence of activation was not affected. Co-immunoprecipitation experiments demonstrated that expressed HA-MiRP1 and HCN2, as well as endogenous MiRP1 and HCN2, co-assemble in ventricular myocytes. The results indicate that MiRP1 acts as a beta subunit for HCN2 pacemaker channel subunits and alters channel gating at physiologically relevant voltages in cardiac cells.  相似文献   

19.
HCN4 is a hyperpolarization-activated nucleotide-gated cation channel involved in the generation of the I(f) current that drives cardiac pacemaker activity. Previous studies have demonstrated that HCN4 is highly expressed in a restricted manner in adult sinoatrial (SA) node [Eur. J. Biochem. 268 (2001) 1646]. However, its developmental expression pattern is unknown. We have examined expression of HCN4 mRNA during mouse heart development. HCN4 mRNA was first detected in the cardiac crescent at embryonic day (ED) 7.5. At ED 8 it was symmetrically located in the most caudal portion of the heart tube, the sinus venosus where pacemaker activity has previously been reported [Am. J. Physiol. 212 (1967) 407]. With further development, HCN4 expression became asymmetrically distributed, occupying the dorsal wall of the right atria, and was progressively restricted to the junction of the right atrial appendage and the superior vena cava. The site of HCN4 expression in late embryonic heart coincided with the location of the SA node in postnatal and adult heart [Cardiovasc. Res. 52 (2001) 51]. Our results suggest that HCN4 may be a unique marker of the developing SA node.  相似文献   

20.
Inherited mutations of SCN5A, the gene that encodes Nav1.5, the alpha subunit of the principle voltage-gated Na+ channel in the heart, cause congenital Long QT Syndrome variant 3 (LQT-3) by perturbation of channel inactivation. LQT-3 mutations induce small, but aberrant, inward current that prolongs the ventricular action potential and subjects mutation carriers to arrhythmia risk dictated in part by the biophysical consequences of the mutations. Most previously investigated LQT-3 mutations are associated with increased arrhythmia risk during rest or sleep. Here we report a novel LQT-3 mutation discovered in a pediatric proband diagnosed with LQTS but who experienced cardiac events during periods of mild exercise as well as rest. The mutation, which changes a single amino acid (S1904L) in the Nav1.5 carboxy terminal domain, disrupts the channel inactivation gate complex and promotes late Na+ channel currents, not by promoting a bursting mode of gating, but by increasing the propensity of the channel to reopen during prolonged depolarization. Incorporating a modified version of the Markov model of the Nav1.5 channel into a mathematical model of the human ventricular action potential predicts that the biophysical consequences of the S1904L mutation result in action potential prolongation that is seen for all heart rates but, in contrast to other previously-investigated LQT-3 mutant channels, is most pronounced at fast rates resulting in a drastic reduction in the cells ability to adapt APD to heart rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号