首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hairpin form of the mismatched octamer d(m5C-G-m5C-G-T-G-m5C-G) was studied by means of NMR spectroscopy. In a companion study it is shown that the hairpin form of this DNA fragment consists of a structure with a stem of three Watson-Crick-type base pairs and a loop consisting of only two nucleotides. The non-exchangeable proton resonances were assigned by means of two-dimensional correlation spectroscopy and two-dimensional nuclear Overhauser effect spectroscopy. Proton-proton coupling constants were used for the conformational analysis of the deoxyribose ring and for some of the backbone torsion angles. From the two-dimensional NMR spectra and the coupling-constant analysis it is concluded that: (i) the stem of the hairpin exhibits B-DNA characteristics; (ii) the sugar rings are not conformationally pure, but display a certain amount of conformational flexibility; (iii) the stacking interaction in the stem of the hairpin is elongated from the 3'-side in a more or less regular fashion with the two loop nucleotides; (iv) at the 5'-side of the stem a stacking discontinuity occurs between the stem and the loop; (v) at the 5'-side of the stem the loop is closed by means of a sharp backbone turn which involves unusual gamma' and beta+ torsion angles in residue dG(6). The NMR results led to the construction of a hairpin-loop model which was energy-minimized by means of a molecular-mechanics program. The results clearly show that a DNA hairpin-loop structure in which the loop consists of only two nucleotides bridging the minor groove in a straightforward fashion, (i) causes no undue steric strain, and (ii) involves well-known conformational principles throughout the course of the backbone. The hairpin form of the title compound is compared with the hairpin form of d(A-T-C-C-T-A-T4-T-A-G-G-A-T), in which the central -T4- part forms a loop of four nucleotides. Both models display similarities as far as stacking interactions are concerned.  相似文献   

2.
Abstract

The hairpin form of the mismatched octamer d(m5C-G-m5C-G-T-G-m5C-G) was studied by means of NMR spectroscopy. In a companion study it is shown that the hairpin form of this DNA fragment consists of a structure with a stem of three Watson-Crick-type base pairs and a loop consisting of only two nucleotides. The non-exchangeable proton resonances were assigned by means of two-dimensional correlation spectroscopy and two-dimensional nuclear Overhauser effect spectroscopy. Proton-proton coupling constants were used for the conformational analysis of the deoxyribose ring and for some of the backbone torsion angles. From the two-dimensional NMR spectra and the coupling-constant analysis it is concluded that: (i) the stem of the hairpin exhibits B-DNA characteristics; (ii) the sugar rings are not conformationally pure, but display a certain amount of conformational flexibility; (iii) the stacking interaction in the stem of the hairpin is elongated from the 3′-side in a more or less regular fashion with the two loop nucleotides; (iv) at the 5′-side of the stem a stacking discontinuity occurs between the stem and the loop; (v) at the 5′-side of the stem the loop is closed by means of a sharp backbone turn which involves unusual γt and β+ torsion angles in residue dG(6).

The NMR results led to the construction of a hairpin-loop model which was energy-minimized by means of a molecular-mechanics program. The results clearly show that a DNA hairpin-loop structure in which the loop consists of only two nucleotides bridging the minor groove in a straightforward fashion, (i) causes no undue steric strain, and (ii) involves well-known conformational principles throughout the course of the backbone.

The hairpin form of the title compound is compared with the hairpin form of d(A-T-C-C-T- A-T4-T-A-G-G-A-T), in which the central -T4- part forms a loop of four nucleotides. Both models display similarities as far as stacking interactions are concerned.  相似文献   

3.
The hairpin formed by d(ATCCTATTTATAGGAT) was studied by means of two-dimensional NMR spectroscopy and conformational analysis. Almost all 1H resonances of the stem region could be assigned, while the 1H and 31P spectra of the loop region were interpreted completely; this includes the stereospecific assignment of the H5' and H5" resonances. The derivation of the detailed loop structure was carried out in a stepwise fashion including some improved and new methods for structure determination from NMR data. In the first step, the mononucleotide structures were examined. The conformational space available to the mononucleotide was scanned systematically by varying the glycosidic torsion angle and pseudorotational parameters. Each generated conformer was tested against the experimental J coupling constants and NOE parameters. In the following stage, the structures of dinucleotides and longer fragments were derived. Inter-residue distances between protons were calculated by means of a procedure in which the simulated NOEs, obtained via a relaxation-matrix approach, were fitted to the experimental NOEs without the introduction of a molecular model. In addition, the backbone torsion angles beta, gamma and epsilon were deduced from homocoupling and heterocoupling constants. These data served as constraints in the next step, in which the loop sequence was subjected to a multi-conformer generation procedure. The resulting structures were tested against the mentioned constraints and disregarded if these constraints were violated. This yielded a family of structures for the loop region, confined to a relatively narrow conformational space. A representative conformation was subsequently docked on a B-type stem which fulfilled the structural constraints (derived from the NMR experiments for the stem region) to yield the hairpin structure. Results obtained from subsequent restrained-molecular-mechanics as well as free-molecular-mechanics calculations are in accordance with those obtained by means of the analysis described above. The structure of the hairpin loop is a compactly folded conformation and the first base of the central TTTA region forms a Hoogsteen T-A pair with the fourth base. This Hoogsteen base pair is stacked upon the sixth base pair of the B-type double-helical stem. The second base of the loop is folded into the minor groove, whereas the third base of the loop is partly stacked on the first and fourth bases. The phosphate backbone exhibits a sharp turn between the third and fourth nucleotides of the loop. The peculiar structure of this hairpin loop is discussed in relation to loop folding in DNA and RNA hairpins and in relation to a general model for loop folding.  相似文献   

4.
The conformational properties of the cyclic dinucleotide d less than pApA greater than were studied by means of molecular mechanics calculations in which a multiconformation analysis was combined with minimum energy calculations. In this approach models of possible conformers are built by varying the torsion angles of the molecule systematically. These models are then subjected to energy minimization; in the present investigation use was made of the AMBER Force field. It followed that the lowest energy conformer has a pseudo-two-fold axis of symmetry. In this conformer the deoxyribose sugars adopt a N-type conformation. The conformation of the sugar-phosphate backbone is determined by the following torsion angles: alpha +, beta t, gamma +, epsilon t and zeta +. The conformation of this ringsystem corresponds to the structure derived earlier by means of NMR spectroscopy and X-ray diffraction. The observation of a preference for N-type sugar conformations in this molecule can be explained by the steric hindrance induced between opposite H3' atoms when one sugar is switched from N- to S-type puckers. The sugars can in principle switch from N- to S-type conformations, but this requires at least the transition of gamma + to gamma -. In this process the molecule obtains an extended shape in which the bases switch from a pseudo-axial to a pseudo-equatorial position. The calculations demonstrate that, apart from the results obtained for the lowest energy conformation, the 180 degrees change in the propagation direction of the phosphate backbone can be achieved by several different combinations of the backbone torsion angles. It appeared that in the low energy conformers five higher order correlations are found. The combination of torsion angles which are involved in changes in the propagation direction of the sugar-phosphate backbone in DNA-hairpin loops and in tRNA, are found in the dataset obtained for cyclic d less than pApA greater than. It turns out, that in the available examples, 180 degrees changes in the backbone direction are localized between two adjacent nucleotides.  相似文献   

5.
Rigid spin-labeled nucleoside C, an analog of deoxycytidine that base-pairs with deoxyguanosine, was incorporated into DNA oligomers by chemical synthesis. Thermal denaturation experiments and circular dichroism (CD) measurements showed that C has a negligible effect on DNA duplex stability and conformation. Nucleoside C was incorporated into several positions within single-stranded DNA oligomers that can adopt two hairpin conformations of similar energy, each of which contains a four-base loop. The relative mobility of nucleotides in the alternating C/G hairpin loops, 5'-d(GCGC) and 5'-d(CGCG), was determined by electron paramagnetic resonance (EPR) spectroscopy. The most mobile nucleotide in the loop is the second one from the 5'-end, followed by the third, first and fourth nucleotides, consistent with previous NMR studies of DNA hairpin loops of different sequences. The EPR hairpin data were also corroborated by fluorescence spectroscopy using oligomers containing reduced C (C(f)), which is fluorescent. Furthermore, EPR spectra of duplex DNAs that contained C at the end of the helix showed features that indicated dipolar coupling between two spins. These data are consistent with end-to-end duplex stacking in solution, which was only observed when G was paired to C, but not when C was paired with A, C or T.  相似文献   

6.
Structure of an unusually stable RNA hairpin.   总被引:21,自引:0,他引:21  
G Varani  C Cheong  I Tinoco 《Biochemistry》1991,30(13):3280-3289
  相似文献   

7.
Nucleotides 680 to 710 of Escherichia coli 16 S rRNA form a distinct structural domain required for ribosome function. The goal of this study was to determine the functional significance of pairing interactions in the 690 region. Two different secondary structures were proposed for this hairpin, based on phylogenetic and chemical modification studies. To study the effect of pairing interactions in the 690 hairpin on ribosome function and to determine which of the proposed secondary structures is biologically significant, we performed an instant-evolution experiment in which the nine nucleotides that form the proposed base-pairs and dangling ends of the 690 stem were randomly mutated, and functional mutant combinations were selected. A total of 96 unique functional mutants were isolated, assayed in vivo, and sequenced. Analysis of these data revealed extensive base-pairing and stacking interactions among the mutated nucleotides. Formation of either a Watson-Crick base-pair or G.U pair between positions 688 and 699 is absolutely required for ribosome function. We also performed NMR studies of a 31-nucleotide RNA which indicate the formation of a functionally important base-pair between nucleotides 688 and 699. Formation of a second base-pair between positions 689 and 698, however, is not essential for ribosome function, but the level of ribosome function correlates with the predicted thermodynamic stability of the nucleotide pairs in these positions. The universally conserved positions G690 and U697 are generally portrayed as forming a G.U mismatch. Our data show co-variation between these positions, but do not support the hypothesis that the G690:U697 pair forms a wobble structure. NMR studies of model 14-nt and 31-nt RNAs support these findings and show that G690 and U697 are involved in unusual stacking interactions but do not form a wobble pair. Preliminary NMR structural analysis reveals that the loop portion of the 690 hairpin folds into a highly structured and novel conformation.  相似文献   

8.
F E Evans  R A Levine 《Biochemistry》1988,27(8):3046-3055
The conformation and dynamics of the dinucleotide d-CpG modified at the C(8) position of the guanine ring by the carcinogen 2-(acetylamino)fluorene has been investigated by high-field 1H NMR spectroscopy. A two-state analysis of chemical shift data has enabled estimation of the extent of intramolecular stacking in aqueous solution as a function of temperature. The stacking, which is mostly fluorene-cytosine, is virtually complete in the low-temperature range. The 500-MHz 1H NMR spectrum consists of two subspectra near ambient temperatures due to a 14.3 +/- 0.3 kcal/mol barrier to internal rotation about the amide bond in the stacked form. A large barrier to internal rotation about the guanyl-nitrogen bond at C(8) has also been ascertained, but separate NMR subspectra were not detected due to the predominance of one of the torsional diastereomers (alpha' = 90 degrees) in the fully stacked state. Problems of self-association and chemical exchange were identified and overcome to enable analysis of the sugar-phosphate backbone conformation utilizing coupling constants. For the exocyclic C(4')-C(5') bond of the deoxyguanosine moiety, there is a high gauche+ (gamma = 60 degrees) conformer population, which is uncommon for a purine nucleotide with a syn orientation about the glycosyl bond. The gauche- conformation (gamma = 300 degrees), which is normally present in syn purine nucleotides in solution, was not detected. The exocyclic C(5')-O(5') torsion of the deoxy-guanosine moiety remains near the classical energy minimum (beta = 180 degrees) in the major stacked conformations. The sugar ring of the deoxycytidine moiety is predominantly in the C2'-endo conformation, while the deoxyguanosine ring is a mixture of conformations, one of which appears to be unusually puckered. The results support intercalation models of modified DNA and suggest a looped-out structure, with the modified guanine being the first base in the loop. Such structures could explain the relatively rapid rate of repair and the frame-shift mutations of this type of adduct.  相似文献   

9.
The 3'-5' circular trinucleotide cr(GpGpGp) was studied by means of 1D and 2D high resolution NMR techniques and molecular mechanics calculations. Analysis of the J-couplings, obtained from the 1H and 13C-NMR spectra, allowed the determination of the conformation of the sugar rings and of the 'circular' phosphate backbone. In the course of the investigations it was found that the Karplus-equation most recently parametrized for the CCOP J-coupling constants could not account for the measured J(C4'P) of 11.1 Hz and a new parametrization for both HCOP and CCOP coupling constants is therefore presented. Subsequent analysis of the coupling constants yielded 'fixed' values for the torsion angles beta and delta (with beta = 178 degrees and delta = 139 degrees). The value of the latter angle corresponds to an S-type sugar conformation. The torsion angles gamma and epsilon are involved in a rapid equilibrium in which they are converted between the gauche(+) and trans and between the trans and gauche(-) domain respectively. We show that the occurrence of epsilon in the gauche(-) domain necessitates S-type sugar conformations. Given the aforementioned values for beta, gamma, delta and epsilon the ring closure constraints for the ring, formed by the phosphate backbone can only be fulfilled if alpha and zeta adopt some special values. After energy minimization with the CHARMm force field only two combinations of alpha and zeta result in energetically favourable structures, i.e. the combination alpha (t)/zeta(g-) in case gamma is in a gauche(+) and epsilon is in a trans conformation, and the combination alpha (t)/zeta (g+) for the combination gamma (t)/epsilon (g-). The results are discussed in relation to earlier findings obtained for cd(ApAp) and cr(GpGp), the latter molecule being a regulator of the synthesis of cellulose in Acetobacter xylinum.  相似文献   

10.
Structure of a U.U pair within a conserved ribosomal RNA hairpin.   总被引:4,自引:2,他引:2       下载免费PDF全文
Y X Wang  S Huang    D E Draper 《Nucleic acids research》1996,24(14):2666-2672
A conserved hairpin corresponding to nt 1057-1081 of large subunit rRNA (Escherichia coli numbering) is part of a domain targeted by antibiotics and ribosomal protein L11. The stem of the hairpin contains a U.U juxtaposition, found as either U.U or U.C in virtually all rRNA sequences. This hairpin has been synthesized and most of the aromatic and sugar protons were assigned by two-dimensional proton NMR. Distances and sugar puckers deduced from the NMR data were combined with restrained molecular dynamics calculations to deduce structural features of the hairpin. The two U residues are stacked in the helix, form one NH3-O4 hydrogen bond and require an extended backbone conformation (trans alpha and gamma) at one of the U nucleotides. The hairpin loop, UAGAAGC closed by a U-A pair, is the same size as tRNA anticodon loops, but not as well ordered.  相似文献   

11.
Structure of a small RNA hairpin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The hairpin stem-loop form of the RNA oligonucleotide rCGC(UUU)GCG has been studied by NMR spectroscopy. In 10 mM phosphate buffer this RNA molecule forms a unimolecular hairpin with a stem of three base pairs and a loop of three uridines, as judged by both NMR and UV absorbance melting behavior. Distance and torsion angle restraints were determined using homonuclear proton-proton and heteronuclear proton-phosphorus 2-D NMR. These values were used in restrained molecular dynamics to determine the structure of the hairpin. The stem has characteristics of A-form geometry, although distortion from A-form occurs in the 3'-side of the stem, presumably to aid in accommodating the small loop. The loop nucleotides adopt C2'-endo conformations. NOE's strongly suggest stacking of the uracils with the stem, especially the first uracil on the 5'-side of the loop. The reversal of the chain direction in the loop seems to occur between U5 and U6. Loop structures produced by molecular dynamics simulations had a wide range of conformations and did not show stacking of the uracils. A flexible loop with significant dynamics is consistent with all the data.  相似文献   

12.
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed.  相似文献   

13.
Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55 degrees C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   

14.
NMR and CD studies were carried out on the dinucleotides 5'-methylphospho-N6-dimethyladenylyl-uridine (mpm62-U) and 5'-methylphospho-uridylyl-N6-dimethyladenosine (mpU-m62A) and on the trinucleotide U-m62A-U. A detailed comparison is given of the conformational features of mpm62A-U and mpU-m62A with the corresponding 5'-nonphosphorylated dinucleotides m62A-U and U-m62A, respectively. The behaviour of the trinucleotide U-m62A-U is compared with the properties of the constituent dinucleotides U-m62A and mpm62A-U. Chemical-shift and CD data were used to determine the amount of stacking interactions. For each compound NMR spectra were recorded at two or three sample concentrations in order to separate intermolecular and intramolecular base-base interactions. The coupling constants of the ribose ring are interpreted in terms of the N/S equilibrium, and population distributions along the backbone angles beta, gamma and epsilon are presented. The combined data indicate a strong similarity between mpm62A-U and m62A-U both in degree and in mode of stacking. In contrast, the existence of different types of stacking interactions in mpU-m62A and U-m62A is suggested in order to explain the NMR and CD data. It is concluded that dinucleoside bisphosphates serve better as a model for the behaviour of trinucleotides than dinucleoside monophosphates. The trinucleotide U-m62A-U adopts a regular single-stranded stacked RNA structure with preference for N-type ribose and gamma+ and beta t backbone torsion angles. The difference in behaviour between the U-m62A- part of U-m62A-U and the dimer U-m62A is seen as a typical example of conformational transmission.  相似文献   

15.
W Saenger  U Heinemann 《FEBS letters》1989,257(2):223-227
In DNA oligonucleotides crystallized in the A form, the nucleotides adopt standard conformation except for steps 5'-CpG-3' where reduced base-pair twist and a sliding motion of the base pairs along their long axes causes pronounced interstrand guanine-guanine overlap. As a consequence, torsion angles alpha, beta and gamma are consistently trans, trans, trans instead of the common-gauche, trans, +gauche. This conformation significantly increases the intraresidue distance between the guanine base and the 5'-phosphate group. A molecular model of poly d(G-C).poly d(G-C) built with these structural characteristics in the A form, which we call A2-DNA, shows that rotation of the guanosine sugar into the syn orientation is easily achieved and pushes the base pair across the helix axis. If successive guanosines are changed this way, a smooth transformation occurs to the left-handed Z-DNA. We suggest that A- and A2-DNA forms of poly d(G-C).poly d(G-C) are metastable and that the actual transition is B in equilibrium (A in equilibrium A2) in equilibrium Z-DNA.  相似文献   

16.
Abstract

Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55°C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   

17.
We have investigated loop-induced structural perturbation of the stem structure in hairpins d(GAATTCXnGAATTC) (X = A, T and n = 3, 4, 5 and 6) that contain an EcoRI restriction site in close proximity to the hairpin loop. Oligonucleotides containing either a T3 or a A3 loop were not hydrolyzed by the restriction enzyme and also showed only weak binding to EcoRI in the absence of the cofactor Mg2+. In contrast, hairpins with larger loops are hydrolyzed by the enzyme at the scission site next to the loop although the substrate with a A4 loop is significantly more resistant than the oligonucleotide containing a T4 loop. The hairpin structures with 3 loop residues were found to be thermally most stable while larger hairpin loops resulted in structures with lower melting temperatures. The T-loop hairpins are thermally more stable than the hairpins containing the same number of A residues in the loop. As judged from proton NMR spectroscopy and the thermodynamic data, the base pair closest to the hairpin loop did form in all cases studied. The hairpin loops did, however, affect the conformation of the stem structure of the hairpins. From 31P and 1H NMR spectroscopy we conclude that the perturbation of the stem structure is stronger for smaller hairpin loops and that the extent of the perturbation is limited to 2-3 base pairs for hairpins with T3 or A4 loops. Our results demonstrate that hairpin loops modulate the conformation of the stem residues close to the loop and that this in turn reduces the substrate activity for DNA sequence specific proteins.  相似文献   

18.
Structural feasibility and conformational requirements for the sequence 5'-d-GGTACIAGTACC-3' to adopt a hairpin loop with I6 and A7 in the loop are studied. It is shown that a hairpin loop containing only two nucleotides can readily be formed without any unusual torsional angles. Stacking is continued on the 5'-side of the loop, with the I6 stacked upon C5. The base A7, on the 3'-side of the loop, can either be partially stacked with I6 or stick outside without stacking. Loop closure can be achieved for both syn and anti conformations of the glycosidic torsions for G8 while maintaining the normal Watson-Crick base pairing with the opposite C5. All torsional angles in the stem fall within the standard B-family of DNA helical structures. The phosphodiesters of the loop have trans,trans conformations. Loop formation might require the torsion about the C4'-C5' bond of G8 to be trans as opposed to the gauche+ observed in B-DNA. These results are discussed in relation to melting temperature studies [Howard et al. (1991) Biochemistry (preceding paper in this issue)] that suggest the formation of very stable hairpin structures for this sequence.  相似文献   

19.
One- and two-dimensional NMR experiments have been undertaken to investigate the structure of DNA hairpins with a five nucleotide loop. Analysis of proton NMR spectra suggests that the four hairpin structures examined have some common structural features; B-type conformation in the stem region and the same stacking pattern, 5' (XXX-turn-XX) 3', in the loop region. The phosphorus NMR spectra suggest that the conformational changes in the loop region affect the backbone conformation of the stem duplex.  相似文献   

20.
The solution structure of the hairpin formed by d(CGCGTTGTTCGCG) has been examined in detail by a wide variety of NMR techniques. The hairpin was characterized by proton NMR to obtain interproton distances and torsion angle information. An energy-minimized model was constructed that is consistent with these data. The hairpin consists of a B-DNA stem of four C-G base pairs and a loop region consisting of five unpaired bases. Three bases in the 5' of the loop are stacked over the 3' end of the stem, and the other two bases in the 3' of the loop are stacked over the 5' end of the stem. The phosphorus NMR spectrum revealed a phosphate in the stem region with an unusual conformation, and two phosphates, P9 and P10, were found to undergo intermediate exchange between conformations. The hairpin was also synthesized with a carbon-13 label in each of the thymidine C6 carbons, and relaxation measurements were performed to determine the extent of internal motions in the loop region. The loop bases are more flexible than the stem bases and exhibit subnanosecond motions with an amplitude corresponding to diffusion in a cone of approximately 30 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号