首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.  相似文献   

2.

Background  

So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate.  相似文献   

3.
4.
The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (alpha), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O(2) and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0< or =A< or =0.75, alpha=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and alpha are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O(2) feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying alpha for the ranges investigated. The effect of pulsatility on Sh is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.  相似文献   

5.
Flow of blood is analyzed under the assumptions of Deakin (1967b, 1968). It is found that for physiological values of hematocrit, there is little variation of erythrocyte concentration with radial distance. This conclusion is compared with those of other analyses, and an experiment is proposed which would decide between the various theories.  相似文献   

6.
The pressure drop from the umbilical vein to the heart plays a vital part in human fetal circulation. The bulk of the pressure drop is believed to take place at the inlet of the ductus venosus, a short narrow branch of the umbilical vein. In this study a generalized Bernoulli formulation was deduced to estimate this pressure drop. The model contains an energy dissipation term and flow-scaled velocities and pressures. The flow-scaled variables are related to their corresponding spatial mean velocities and pressures by certain shape factors. Further, based on physiological measurements, we established a simplified, rigid-walled, three-dimensional computational model of the umbilical vein and ductus venosus bifurcation for stationary flow conditions. Simulations were carried out for Reynolds numbers and umbilical vein curvature ratios in their respective physiological ranges. The shape factors in the Bernoulli formulation were then estimated for our computational models. They showed no significant Reynolds number or curvature ratio dependency. Further, the energy dissipation in our models was estimated to constitute 24 to 31 percent of the pressure drop, depending on the Reynolds number and the curvature ratio. The energy dissipation should therefore be taken into account in pressure drop estimates.  相似文献   

7.
In a previous paper (Bull. Math. Biophysics,29, 549–563, 1967) the author derived equations to represent the flow of blood in an artery. It was pointed out that these did not completely characterize the system and that an additional hypothesis was required. The hypothesis of minimal energy dissipation had been thought to imply a central tendency on the part of suspended particles (erythrocytes). It is here shown that if the fluid is non-Newtonian this may not be so.  相似文献   

8.
The pulsatile blood flow and gas transport of oxygen and carbon dioxide through a cylindrical array of microfibers are numerically simulated. Blood is modeled as a homogeneous Casson fluid, and hemoglobin molecules in blood are assumed to be in local equilibrium with oxygen and carbon dioxide. It is shown that flow pulsatility enhances gas transport and the amount of gas exchange is sensitive to the blood flow field across the fibers. The steady Sherwood number dependence on Reynolds number was shown to have a linear relation consistent with experimental findings. For most cases, an enhancement in gas transport is accompanied with an increase in flow resistance. Maximum local shear stress is provided as a possible indicator of thrombosis, and the computed shear stress is shown to be below the threshold value for thrombosis formation for all cases evaluated.  相似文献   

9.
P Chaturani  R P Samy 《Biorheology》1986,23(5):499-511
The effects of non-Newtonian nature of blood and pulsatility on flow through a stenosed tube have been investigated. A perturbation method is used to analyse the flow. It is of interest to note that the thickness of the viscous flow region is non-uniform (changing with axial distance). An analytic relation between viscous flow region thickness and red cell concentration has been obtained. It is important to mention that some researchers have obtained an approximate solution for the flow rate-pressure gradient equation (assuming the ratio between the yield stress and the wall shear to be very small in comparison to unity); in the present analysis, we have obtained an exact solution for this non-linear equation without making that assumption. The approximate and exact solutions compare well with one of the exact solutions. Another important result is that the mean and steady flow rates decrease as the yield stress theta increases. For the low values of the yield stress, the mean flow rate is higher than the steady flow rate, but for high values of the yield stress, the mean flow rate behaviour is of opposite nature. The critical value of the yield stress at which the flow rate behaviour changes from one type to another has been determined. Further, it seems that there exists a value of the yield stress at which flow stops for both the flows (steady and pulsatile). It is observed that the flow stop yield value for pulsatile flow is lower than the steady flow. The most notable result of pulsatility is the phase lag between the pressure gradient and flow rate, which is further influenced by the yield stress and stenosis. Another important result of pulsatility is the mean resistance to flow is greater than its steady flow value, whereas the mean value of the wall shear for pulsatile flow is equal to steady wall shear. Many standard results regarding Casson and Newtonian fluids flow, uniform tube flow and steady flow can be obtained as the special cases of the present analysis. Finally, some applications of this theoretical analysis have been cited.  相似文献   

10.
11.
K Perktold  R Peter  M Resch 《Biorheology》1989,26(6):1011-1030
Blood flow is analysed by means of computer simulation in an idealized arterial bifurcation model which is pathologically altered by a saccular aneurysm. The theoretical study of the flow pattern and the paths of fluid particles is carried out under pulsatile Newtonian and non-Newtonian flow conditions. The governing equations are solved numerically with the use of the finite element method. The results show the disturbed blood flow in the bifurcation and the relatively low intra-aneurysmal flow circulation. In addition to the study of basic flow patterns in the segment, a comparison of non-Newtonian and Newtonian results is carried out. This comparison proves that for the considered large artery model under physiological flow conditions where the yield number is relatively low there is no essential difference in the results.  相似文献   

12.
The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier-Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04-1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat flux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.  相似文献   

13.
The pulsatility of coronary circulation can be accurately simulated on the basis of the measured branching pattern, vascular geometry, and material properties of the coronary vasculature. A Womersley-type mathematical model is developed to analyze pulsatile blood flow in diastole in the absence of vessel tone in the entire coronary arterial tree on the basis of previously measured morphometric data. The model incorporates a constitutive equation of pressure and cross-section area relation based on our previous experimental data. The formulation enables the prediction of the impedance, the pressure distribution, and the pulsatile flow distribution throughout the entire coronary arterial tree. The model is validated by experimental measurements in six diastolic arrested, vasodilated porcine hearts. The agreement between theory and experiment is excellent. Furthermore, the present pulse wave results at low frequency agree very well with previously published steady-state model. Finally, the phase angle of flow is seen to decrease along the trunk of the major coronary artery and primary branches toward the capillary vessels. This study represents the first, most extensive validated analysis of Womersley-type pulse wave transmission in the entire coronary arterial tree down to the first segment of capillaries. The present model will serve to quantitatively test various hypotheses in the coronary circulation under pulsatile flow conditions.  相似文献   

14.
This paper deals with the pulsatile blood flow in the lung alveolar sheets by idealizing each of them as a channel covered by porous media. As the blood flow in the lung is of low Reynolds number, a creeping flow is assumed in the channel. The analytical and numerical results for the velocity and pressure distribution in the porous medium are presented. The effect of an imposed slip condition is also studied. Comparisons with the corresponding results for the steady-state case are made at the end.  相似文献   

15.
16.
In this paper the viscous energy dissipation in a series of glass model symmetric bifurcations—typical of human vascular branching—was studied. The bifurcations studied have included angles of 75°, 100° and 125° and total output/input area ratios of 0.73, 1.07 and 1.33. The flowrate range studied corresponded to parent tube Reynolds numbers in the range 100–1000.Pressure and flow measurements were made using a highly sensitive variable reluctance pressure transducer and electromagnetic flowmeter. The measurements were made in such a way as to indicate the net effect of the bifurcation.It was found that a dimensionless form of the viscous dissipation had a constant value for all the geometries investigated up to a Reynolds number of 800. Above this, for an angle of 125°, the measured energy dissipation increased. An analytical model based on entry flow principles showed good agreement with measured values except at an area ratio of 0.73. The reasons for this are discussed with the physiological implications of the results.  相似文献   

17.
Data on volumetric mass-transfer coefficient, KLaL, in a 12 × 10−3 m3 airlift bioreactor are reported. Measurements were made in sea water. The superficial gas velocity ranged up to 0.21 m/s. Four cylindrical spargers (60–1000 μm pore size) were tested. In bubbly flow, the sparger pore size strongly influenced the KLaL; the highest KLaL values were obtained with the smallest pore size. In contrast, in the transition and heterogeneous flow regimes, the pore size had little influence on KLaL. The best correlation of the mass transfer data was obtained when both gas holdup and liquid superficial velocity were taken as independent variables. Shear rates were estimated in the different zones of the reactor. The highest values were found in the bottom zone of the reactor and in the gas-liquid separator. The penetration and isotropic turbulence models were used to develop a semi-theoretical equation relating the volumetric mass-transfer coefficient to shear rate; hence providing a better understanding of how the operational variables may be manipulated to attain a moderate shear rate and an appropriate level of mass transfer, two extremely important parameters for the growth of sensible microorganisms as those used in marine biotechnology.  相似文献   

18.
Pulmonary blood flow redistribution by increased gravitational force   总被引:2,自引:0,他引:2  
This study was undertaken to assess theinfluence of gravity on the distribution of pulmonary blood flow (PBF)using increased inertial force as a perturbation. PBF was studied inunanesthetized swine exposed toGx (dorsal-to-ventraldirection, prone position), where G is the magnitude of the force ofgravity at the surface of the Earth, on the Armstrong LaboratoryCentrifuge at Brooks Air Force Base. PBF was measured using 15-µmfluorescent microspheres, a method with markedly enhanced spatialresolution. Each animal was exposed randomly to 1, 2, and3 Gx. Pulmonary vascularpressures, cardiac output, heart rate, arterial blood gases, and PBFdistribution were measured at each G level. Heterogeneity of PBFdistribution as measured by the coefficient of variation of PBFdistribution increased from 0.38 ± 0.05 to 0.55 ± 0.11 to0.72 ± 0.16 at 1, 2, and 3Gx, respectively. At 1Gx, PBF was greatest in theventral and cranial and lowest in the dorsal and caudal regions of thelung. With increased Gx,this gradient was augmented in both directions. Extrapolation of thesevalues to 0 G predicts a slight dorsal (nondependent) region dominanceof PBF and a coefficient of variation of 0.22 in microgravity. Analysisof variance revealed that a fixed component (vascular structure)accounted for 81% and nonstructure components (including gravity)accounted for the remaining 19% of the PBF variance across the entireexperiment (all 3 gravitational levels). The results are inconsistentwith the predictions of the zone model.

  相似文献   

19.
P Gaehtgens 《Biorheology》1987,24(4):367-376
Pressure-velocity relations were obtained in vertical and horizontal glass tubes (I.D. 26 to 83 micron) perfused with normal human blood at feed hematocrits between 0.25 and 0.65. Perfusion pressures used corresponded to wall shear stresses up to 0.27 dyn cm-2. Red cell velocity measurements were made both immediately following implementation of perfusion pressure (with red cells still disaggregated) and in a steady state situation (with red cells aggregated). Analysis of the slopes of the linear relations between perfusion pressure and velocity showed apparent viscosity to decrease with the manifestation of red cell aggregation. In horizontal tubes, sedimentation and aggregation occurred simultaneously, and apparent viscosity increased due to axial asymmetry of cell concentration. Evidence for a yield shear stress (flow stagnation at positive driving pressure) was not observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号