首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. Previously, we showed that alternansucrase only forms certain isomers of DP > 4 from maltose in measurable amounts, and that these oligosaccharides belong to the oligoalternan series rather than the oligodextran series. We now demonstrate that the acceptor products from gentiobiose, also formed in good yields (nearly 90% in unoptimized reactions), follow a pattern similar to those formed from maltose. The initial product is a single trisaccharide, α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Two tetrasaccharides were formed in approximately equal quantities: α-d-Glcp-(1→3)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc and α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Just one pentasaccharide was isolated from the reaction mixture, α-d-Glcp-(1→6)-α-d-Glcp-(1→3)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Our hypothesis that the enzyme is incapable of forming two consecutive α-(1→3) linkages, and does not form products with more than two consecutive α-(1→6) linkages, apparently applies to other acceptors as well as to maltose. The glucosylation of gentiobiose reduces or eliminates its bitter taste.  相似文献   

2.
Synthesis of the trisaccharide, allyl α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→4)-α-l-rhamnopyranoside related to O-chain glycans isolated from the deaminated LPSs of Klebsiella pneumoniae serotype 012, was achieved through condensation of suitably synthesized disaccharide, allyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-d-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-α-l-rhamnopyranoside and donor, ethyl 2,3,4-tri-O-acetyl-1-thio α-l-rhamnopyranoside starting from l-rhamnose and d-glucosamine hydrochloride. The trisaccharide can be utilized for the synthesis of neoglycoconjugates for use as a synthetic vaccine by coupling it with a suitable protein after deprotection. Various regio- and stereoselective protecting group strategies have been carefully considered, as protecting groups can influence the reactivity of the electrophile and nucleophile in glycosylation reactions on the basis of steric and electronic requirements.  相似文献   

3.
High-molecular-mass polysaccharides were released by mild acid degradation of the lipopolysaccharides of two wild-type Vibrio vulnificus strain, a flagellated motile strain CECT 5198 and a non-flagellated non-motile strain S3-I2-36. Studies by sugar analysis and partial acid hydrolysis along with 1H and 13C NMR spectroscopies showed that the polysaccharides from both strains have the same trisaccharide repeating unit of the following structure:→4)-β-d-GlcpNAc3NAcylAN-(1→4)-α-l-GalpNAmA-(1→3)-α-d-QuipNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose, GalNAmA for 2-acetimidoylamino-2-deoxygalacturonic acid, GlcNAc3NAcylAN for 2-acetamido-3-acylamino-2,3-dideoxyglucuronamide and acyl for 4-d-malyl (∼30%) or 2-O-acetyl-4-d-malyl (∼70%). The structure of the polysaccharide studied resembles much that of a marine bacterium Pseudoalteromonas rubra ATCC 29570 reinvestigated in this work. The latter differs in (i) the absolute configuration of malic acid (l vs d), (ii) 3-O-acetylation of GalNAmA and (iii) replacement of QuiNAc with its 4-keto biosynthetic precursor.  相似文献   

4.
The O-polysaccharide of Pragia fontium 97U116 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the pentasaccharide-repeating unit was established: →2)-α-d-Galf-(1→3)-α-l-Rhap2AcI-(1→4)-α-d-GlcpNAcI-(1→2)-α-l-RhapII-(1→3)-β-d-GlcpNAcII-(1→  相似文献   

5.
Stereocontrolled syntheses of branched tri-, tetra-, and pentasaccharides displaying a Galβ1→3GalNAc core in the glycan portion of the glycoprotein antigen from the parasite Echinococcusmultilocularis have been accomplished. Trisaccharide Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (A), tetrasaccharide Galβ1→3(Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (D), and pentasaccharides Galβ1→3(Galβ1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (E) and Gal β1→3(Galα1→4Galβ1→4GlcNAcβ1→6)GalNAcα1-OR (F) (R = 2-(trimethylsilyl)ethyl) were synthesized by block synthesis. The disaccharide 2-(trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl-(1→3)-2-azido-4-O-benzyl-2-deoxy-α-d-galactopyranoside served as a common glycosyl acceptor in the synthesis of the branched oligosaccharides. Moreover, linear trisaccharide Galβ1→4Galβ1→3GalNAcα1-OR (B) and branched tetrasaccharide Galβ1→4Galβ1→3(GlcNAcβ1→6)GalNAcα1-OR (C) were synthesized by stepwise condensation.  相似文献   

6.
The O-antigenic polysaccharide of Salmonella Mara O:39 (formerly Q) was investigated by sugar and methylation analyses, absolute configuration assignment, mass spectrometry and NMR spectroscopy. The experiments revealed an O-polysaccharide chain composed of the following linear tetrasaccharide repeating units with the structure:→2)-α-l-Quip3NAc-(1→3)-α-d-Manp-(1→3)-α-l-Fucp-(1→3)-α-d-GalpNAc-(1→where α-l-Quip3NAc is the residue of 3-acetamido-3,6-dideoxy-α-l-glucopyranose. This repeating unit is the first published structure of the O-polysaccharide from 27 serotypes of Salmonella bacteria belonging to serogroup O:39 in the Kauffmann-White classification system.  相似文献   

7.
The following structure of the O-polysaccharide (O-antigen) of Salmonella enterica O13 was established by chemical analyses along with 2D 1H and 13C NMR spectroscopy:→2)-α-l-Fucp-(1→2)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen of S. enterica O13 was found to be closely related to that of Escherichia coli O127, which differs only in the presence of a GalNAc residue in place of the GlcNAc residue and O-acetylation. The location of the O-acetyl groups in the E. coli O127 polysaccharide was determined. The structures of the O-polysaccharides studied are in agreement with the DNA sequence of the O-antigen gene clusters of S. enterica O13 and E. coli O127 reported earlier.  相似文献   

8.
The O-antigen is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in its pathogenicity. Composition and structure of the O-antigens of Escherichia coli are highly diverse mainly due to genetic variations in the O-antigen gene cluster. In this work, the chemical structure and the gene cluster of the O-antigen of E. coli O161 were studied. Chemical degradations, sugar analyses, and NMR spectroscopy showed that the O161 antigen possesses a trisaccharide O-repeating unit containing a 5-N-acetyl-7-N-(d-alanyl) derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7Ala) and having the following structure:
→8)-α-Legp5Ac7Ala-(2→4)-β-d-GlcpA-(1→3)-β-d-GlcpNAc-(1→  相似文献   

9.
An ethanol extract of the aerial parts of Delphinium gracile DC. yielded five flavonol glycosides quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-caffeoyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (1), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (2), quercetin-3-O-{[β-d-xylopyranosyl (1 → 3)-4-O-(Z-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranosyl (1 → 2)]}-β-d-glucopyranoside (3), kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (4) kaempferol-3-O-{[β-d-glucopyranosyl (1 → 3)-4-O-(E-p-coumaroyl)-α-l-rhamnopyranosyl (1 → 6)][β-d-glucopyranoside-7-O-(4-O-acetyl)-α-l-rhamnopyranoside (5) in addition to 4-(β-d-glucopyranosyloxy)-6-methyl-2H-pyran-2-one (6) and rutin. Structures were elucidated by spectroscopic methods.  相似文献   

10.
Lipopolysaccharide (LPS) of Haemophilus influenzae comprises a conserved tri-l-glycero-d-manno-heptosyl inner-core moiety (l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-[β-d-GlcIp-(1→4)]-l-α-d-Hepp-(1→5)-α-Kdop) to which addition of β-d-Glcp to O-4 of GlcI in serotype b strains is controlled by the gene lex2B. In non-typeable H. influenzae strains 1124 and 2019, however, a β-d-Galp is linked to O-4 of GlcI. In order to test the hypothesis that the lex2 locus is involved in the expression of β-d-Galp-(1→4-β-d-Glcp-(1→ from HepI, lex2B was inactivated in strains 1124 and 2019, and LPS glycoform populations from the resulting mutant strains were investigated. Detailed structural analyses using NMR techniques and electrospray-ionisation mass spectrometry (ESIMS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESIMSn on permethylated dephosphorylated OS, indicated both lex2B mutant strains to express only β-d-Glcp extensions from HepI. This provides strong evidence that Lex2B functions as a galactosyltransferase adding a β-d-Galp to O-4 of GlcI in these strains, indicating that allelic polymorphisms in the lex2B sequence direct alternative functions of the gene product.  相似文献   

11.
To commercialize the production of glycolipid adjuvants, their synthesis needs to be both robust and inexpensive. Herein we describe a semi-synthetic approach where the lipid acceptor is derived from the biomass of the archaeon Halobacterium salinarum, and the glycosyl donors are chemically synthesized. This work presents some preliminary results using the promoter system N-iodosuccinimide (NIS) and a stable 0.25 M solution of boron trifluoride-trifluoroethanol (BF3·TFE2) in dichloromethane. This promoter system allows for the use of peracetyl alkyl(aryl)thioglycosides that are available in high yield from inexpensive disaccharide starting materials by promoting clean glycosylation reactions from which pure product can be easily isolated. Conventional glycosylation using NIS-silver trifluoromethanesulfonate (AgOTf) leads to extensive acetyl transfer to the archaeol acceptor and numerous byproducts that make purification complicated. As part of preliminary structure-adjuvant activity studies, we describe the one-pot synthesis of a gentiobiose β-Glcp-(1→6)-Glcp-SEt donor with an O-2 benzoyl group, which can be used to prepare a disaccharide attached to archaeol in 85% overall yield, and the related glycolipid trisaccharide β-Glcp-(1→6)-β-Glcp-(1→6)-β-Glcp-(1→O)-archaeol. The synthesis of the isomeric β-Glcp-(1→6)-α-Glcp-(1→O)-archaeol featuring a >10:1 α/β α-selective glycosylation using the promoter system N-phenylselenylphthalimide-trifluoromethanesulfonic acid (TfOH) is also presented, along with the adjuvant properties of the corresponding archaeosomes (liposomes comprised entirely of combinations of isoprenoid archaeal-like lipids). These new vaccine formulations extend previous observations that glycolipids are integral to the activation of MHC type I pathways via CD8+ antigen-specific T-cells. The β-Glcp-(1→6)-β-Glcp-(1→6)-β-Glcp-(1→O)-archaeol trisaccharide is shown to be more active than the Glcp-(1→6)-β-Glcp-(1→O)-archaeol disaccharide.  相似文献   

12.
Shearzyme (GH10 endo-1,4-β-d-xylanase) and two different α-l-arabinofuranosidases (AXH-m and AXH-d3) were used stepwise to manufacture arabinoxylo-oligosaccharides (AXOS) with α-l-Araf (1→2)-monosubstituted β-d-Xylp residues or α-l-Araf (1→2)- and (1→3) doubly substituted β-d-Xylp residues from wheat arabinoxylan (AX) in a rather straightforward way. Four major AXOS (d-I, d-II, m-I and m-II) were formed in two separate hydrolyses. The AXOS were purified and the structures were confirmed using TLC, HPAEC-PAD, MALDI-TOF-MS and 1D and 2D NMR spectroscopy. The samples were identified as d-I: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp, d-II: α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-β-d-Xylp-(1→4)-d-Xylp, m-I: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xylp and m-II: α-l-Araf-(1→2)-β-d-Xylp-(1→4)-d-Xylp. To our knowledge, this is the first report on structural 1H and 13C NMR analysis of xylobiose-derived AXOS d-II and m-II. The latter compound has not been reported previously. The doubly substituted AXOS were produced for the first time in good yields, as d-I and d-II corresponded to 11.8 and 5.6 wt% of AX, respectively. Singly α-l-Araf (1→2)-substituted AXOS could also be prepared in similar yields by treating the doubly substituted AXOS further with AXH-d3.  相似文献   

13.
An O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Salmonella enterica O41, and the following structure of the O-unit was determined by chemical analyses along with 1D and 2D 1H and 13C NMR spectroscopy:→2)-β-d-Manp-(1→4)-α-d-Glcp-(1→3)-α-l-QuipNAc-(1→3)-α-d-GlcpNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose. The structure established is in agreement with the O-antigen gene cluster of S. enterica O41 and tentative assignment of the gene functions reported earlier.  相似文献   

14.
The branched O-antigens of Escherichia coli O159 and Shigella dysenteriae type 4 are structurally related and are known to show cross-reactivity with antibodies. In the present study, conformational analyses were performed on these two O-antigens using molecular mechanics MM3(96) with filtered systematic search. The results show very strong steric restrictions for the trisaccharide at the branch point of the E. coli O159 antigen, especially for the β-d-GlcNAc-(1 → 3)-β-d-GlcNAc linkage of the main chain. For the type 4 O-antigen the calculations show essentially a single conformation with respect to the α-d-GlcNAc-(1 → 3)-α-d-GlcNAc linkage of the main chain and three different favoured conformations for the fucose branch. Consecutive repeating units of the S. dysenteriae type 4 and E. coli O159 O-antigens form linear extended chains with significant flexibility between the branches. Comparative calculations carried out with the SWEET server indicate that our method of filtered systematic search is a superior method in the case of branched, constrained oligosaccharides. Based on the results of the MM3 calculations, we propose that the common epitope explaining the cross-reactivity comprises the fucose branch, the downstream GlcNAc and part of the uronic acid.  相似文献   

15.
Molecular dynamics (MD) simulations of the conformation of the iduronate ring in a methyl glycoside and as the central residue in a trisaccharide have been carried out. Separate simulations were carried out with initial 1C4, 2S0, and 4C1 iduronate ring conformations. Simulations were followed by observing the time development of the Cremer–Pople ring puckering parameters θ,?2. Starting with chair geometries gave trajectories showing only ring oscillations close to the initial geometry. Simulations were performed with a 2S0 starting geometry using explicit water and in vacuum with dielectric constants (ε) of 1 and 80, as well as with distance-dependent dielectric functions of 2r and 4r. In both the explicit water simulation and the vacuum (ε = 80) simulations, extensive pseudorotational motion was observed in which boat and twist-boat ring conformers interconvert. The overall range of ?22 variation in the trisaccharide was about half of that observed in the methyl glycoside. The Haasnoot procedure for calculating H-H coupling constants in saccharides was applied to structures obtained from MD trajectories. Using MD time averaged couplings along with experimental data allowed the relative fractions of chair and boat/twist-boat forms to be derived. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Parallel cascade selection molecular dynamics (PaCS-MD) has been proposed as a conformational sampling method for enhancing structural transitions from a given reactant to a product by repeating cycles of short-time MD simulations. In the present paper, we assessed how the time scale of a short-time MD simulation affected the computational efficiency by changing the simulation length. In conclusion, ps-order (tps) PaCS-MD simulations showed a higher computational efficiency as a total simulation time over the cycles than ns-order (tns) PaCS-MD simulations, indicating that tps might be suitable for generating structural transitions efficiently.  相似文献   

17.
The 1H NMR chemical shifts and NOEs of hydroxy protons in Lewis X trisaccharide, β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, and Lewis Y tetrasaccharide, α-l-Fucp-(1 → 2)-β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, were obtained for 85% H2O/15% (CD3)2CO solutions. The OH-4 signal of Galp in Lewis X and OH-3, OH-4 signals of Galp, and OH-2 signal of Fucp linked to Galp in Lewis Y had chemical shifts which indicate reduced hydration due to their proximity to the hydrophobic face of the Fucp unit linked to GlcpNAc. The inter-residue NOEs involving the exchangeable NH and OH protons confirmed the stacking interaction between the Fucp linked to the GlcpNAc and the Galp residues in Lewis X and Lewis Y.  相似文献   

18.
Molecular dynamics simulations in vacuum and solution have been carried out on 2′-α-L -fucosyllactitol, a model for blood group H in conjunction with two-dimensional nmr measurements on the same compound. Three independent starting conformations for the dynamics were chosen from low energy conformations obtained by a ?/ψ grid search. Nine 5 ns vacuum simulations of the trisaccharide were performed, employing three different ways to treat electrostatic interactions for each starting conformation: distance-dependent dielectric with ε = r, constant dielectric with ε = 1, or constant dielectric with ε = 80. In vacuum, transitions of ? and ψ for the α-L -Fuc-(1 → 2)-β-D -Gal element occur in a cooperative manner. The virtual distance obtained for H1 in fucose to H2 in galactose from nuclear Overhauser effect spectroscopy experiments agree with one of the conformations of the trisaccharide in one of the three 100 ps aqueous simulations (?/ψ ca. ?100°/150°), indicating this may be a dominant solution conformation. The rms fluctuations of the ?- and ψ-dihedral angles were ~ 10° for a conformational state, both in the vacuum and the aqueous simulations. For the simulations in vacuum, the agreement with experimental NOE data is reasonable when a constant dielectric of 1 is used (major conformers having ?/ψ ca. ?100°/150° and ?140°/100°), whereas the agreement was poor with a constant dielectric of 80. Translational diffusion coefficients calculated from the simulation of the oligosaccharides were 0.12–0.18 × 10?5 cm2/s and from nmr measurements 0.27 × 10?5 cm2/s. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The structural characterization of branched rhamnogalacturonans (RGs) requires the availability of methods that selectively cleave the Rhap-(1→4)-α-GalAp linkage and thereby generate oligosaccharide fragments that are suitable for mass spectrometric and NMR spectroscopic analyses. Enzymic cleavage of this linkage is often ineffective, especially in highly branched RGs. Therefore, we have developed an improved chemical fragmentation method based on β-elimination of esterified 4-linked GalpA residues. At least 85% of the carboxyl groups of the GalA residues in Arabidopsis thaliana seed mucilage RG is esterified using methyl iodide or 3-iodopropanol in Me2SO containing 8% water and 1% tetrabutylammonium fluoride. However, β-elimination fragmentation at pH 7.3 and 120 °C is far more extensive with hydroxypropyl-esterified RG than with methyl-esterified RG. The non-reducing 4-deoxy-β-l-threo-hex-4-enepyranosyluronic acid residue formed by the β-elimination reaction is completely removed by treatment with aqueous N-bromosuccinimide, thereby simplifying the structural characterization of the chemically generated oligoglycosyl fragments. This newly developed procedure was used to selectively fragment the branched RG from peppergrass seed mucilage. The products were characterized using MALDI-TOF mass spectrometry, glycosyl residue composition analysis, and 1 and 2D NMR spectroscopy. Our data show that the most abundant low-molecular weight fragments contained a backbone rhamnose residue substituted at O-4 with a single sidechain, and suggest that peppergrass seed mucilage RG is composed mainly of the repeating unit 4-O-methyl-α-d-GlcpA-(1→4)-β-d-Galp-(1→4)-[→4)-α-d-GalpA-(1→2)-]-α-l-Rhap-(1→.  相似文献   

20.
B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号