首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

2.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

3.
In order for cryopreservation to become a practical tool for aquaculture, optimized protocols must be developed for each species and cell type. Knowledge of a cell’s osmotic tolerance and membrane permeability characteristics can assist in optimized protocol development. In this study, these characteristics were determined for Pacific oyster oocytes and modified methods for loading and unloading ethylene glycol (EG) were tested. Oocytes were found to behave as ideal osmometers and their osmotically inactive fraction (Vb) was calculated to be 0.48. Oocytes exposed to NaCl solutions of 0.6 to 2.3 Osm fertilized at rates equivalent to oocytes left in seawater. This corresponds to volume changes of +27.3 and −38.1 ± 1.2%. The permeability of the oocytes to water (Lp) was determined to be 3.8 ± 0.4 × 10−2, 5.7 ± 0.8 × 10−2, and 13.2 ± 1.3 × 10−2 μm min−1 atm−1, when measured at temperatures of 5, 10 and 20 °C. The respective EG permeability values (Ps) were 9.5 ± 0.1 × 10−5, 14.6 ± 1.2 × 10−5, and 41.7 ± 2.4 × 10−5 cm min−1. The activation energies for Lp and Ps were determined to be 14.5 and 17.5 kcal mol−1, respectively. Different models for EG loading and unloading from oocytes were developed and tested. Post-thaw fertilization did not differ significantly between a published step addition method and single step addition at 20 °C. This represents a considerable reduction in handling. The results of this study demonstrate that the cryobiological characteristics of a given cell type should be taken into account when developing cryopreservation methods.  相似文献   

4.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

5.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

6.
Human serum albumin (HSA) is a monomeric allosteric protein. Here, the effect of ibuprofen on denitrosylation kinetics (koff) and spectroscopic properties of HSA-heme-Fe(II)-NO is reported. The koff value increases from (1.4 ± 0.2) × 10−4 s−1, in the absence of the drug, to (9.5 ± 1.2) × 10−3 s−1, in the presence of 1.0 × 10−2 M ibuprofen, at pH 7.0 and 10.0 °C. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constants for ibuprofen binding to HSA-heme-Fe(II)-NO (K1 = (3.1 ± 0.4) × 10−7 M, K2 = (1.7 ± 0.2) × 10−4 M, and K3 = (2.2 ± 0.2) × 10−3 M) were determined. The K3 value corresponds to the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(II)-NO determined by monitoring drug-dependent absorbance spectroscopic changes (H = (2.6 ± 0.3) × 10−3 M). Present data indicate that ibuprofen binds to the FA3-FA4 cleft (Sudlow’s site II), to the FA6 site, and possibly to the FA2 pocket, inducing the hexa-coordination of HSA-heme-Fe(II)-NO and triggering the heme-ligand dissociation kinetics.  相似文献   

7.
Short-and long-duration light curves were applied to four macroalgae (Ulva sp., Codium fragile, Ecklonia radiata and Lessonia variegata), and two microalgal species (Chlorella emersonii and Chaetoceros muellerii). With increasing light curve duration, the maximal relative electron transport rate increased by a factor of three in E. radiata, and by factors of 1.25 and 1.23 in C. emersonii and L. variegata, respectively, but did not change in C. fragile and Ch. muellerii. The light saturation point Ek increased by 26 μmol photons m−2 s−1 in C. emersonii and 20 μmol photons m−2 s−1 in Ch. muellerii and E. radiata with elevated light curve exposure times. Oscillatory patterns of the continuous fluorescence readings reflect accumulation of QA. Continuous fluorescence values increased, or decreased, by approximately 10% within light curve increments. However, oscillations of 25% were not uncommon, which shows that cells are changing their photo-physiological response state during steady light conditions. Increasing dark acclimation times prior to light curve application lowered maximal relative electron transport rates in the C. emersonii (from 28 ± 1.7 to 25 ± 1.2 for 15 and 95 min dark acclimation in short-duration light curves respectively). This effect was counterbalanced by longer light curve application. It can therefore be concluded that manipulation of light exposure and dark incubation prior to the experiment affects the photosynthetic response, presumably due to different activation states of photosynthetic and photoprotective mechanisms. The highly species-specific photo-response patterns imply that a common rapid light curve protocol will generate artefacts in some species.  相似文献   

8.
9.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

10.
The study aimed to define the key factors involved in the modulation of actinomycete mannanases. We focused on the roles of carbohydrate-binding modules (CBMs) and bivalent ions. To investigate the effects of these factors, two actinomycete mannanase genes were cloned from Streptomyces thermoluteus (StManII) and Streptomyces lividans (SlMan). CBMs fused to mannanase catalytic domains do not affect the thermal stability of the proteins. CBM2 of StManII increased the catalytic efficiency toward soluble-mannan and insoluble-mannan by 25%–36%, and CBM10 of SlMan increased the catalytic efficiency toward soluble-mannan by 40%–50%. Thermal stability of wild-type and mutant enzymes was enhanced by calcium and manganese. Thermal stability of SlMandC was also slightly enhanced by magnesium. These results indicated that bivalent ion-binding site responsible for thermal stability was in the catalytic domains. Thermal stability of mannanase differed in the kinds of bivalent ions. Isothermal titration calorimetry revealed that the catalytic domain of StManII bound bivalent ions with a Ka of 5.39 ± 0.45 × 103–7.56 ± 1.47 × 103 M− 1, and the catalytic domain of SlMan bound bivalent ions with a Ka of 1.06 ± 0.34 × 103–3.86 ± 0.94 × 103 M− 1. The stoichiometry of these bindings was consistent with one bivalent ion-binding site per molecule of enzyme. Circular dichroism spectrum revealed that the presence of bivalent ions induced changes in the secondary structures of the enzymes. The binding of certain bivalent ion responsible for thermal stability was accompanied by a different conformational change by each bivalent ion. Actinomycete mannanases belong to GHF5 which contained various hemicellulases; therefore, the information obtained from mannanases applies to the other enzymes.  相似文献   

11.
A case study on Centaurea gymnocarpa Moris & De Not., a narrow endemic species, was carried out by analyzing its morphological, anatomical, and physiological traits in response to natural habitat stress factors under Mediterranean climate conditions. The results underline that the species is particularly adapted to the environment where it naturally grows. At the plant level, the above-ground/below-ground dry mass (1.73 ± 0.60) shows its investment predominately in the above-ground structure with a resulting total leaf area per plant of 1399 ± 94 cm2. The senescent attached leaves at the base of the plant contribute to limit leaf transpiration by shading soil around the plant. Moreover, the dense C. gymnocarpa leaf pubescence, leaf rolling, the relatively high leaf mass area (LMA = 12.3 ± 1.3 mg cm−2) and leaf tissue density (LTD = 427 ± 44 mg cm−3) contribute to limit leaf transpiration, also postponing leaf death under dry conditions. At the physiological level, a relatively low respiration/photosynthesis ratio (R/PN) in spring results from high R [2.26 ± 0.59 μmol (CO2) m−2 s−1] and PN [12.3 ± 1.5 μmol (CO2) m−2 s−1]. The high photosynthetic nitrogen use efficiency [PNUE = 15.5 ± 0.4 μmol (CO2) g−1 (N) s−1] shows the large amount of nitrogen (N) invested in the photosynthetic machinery of new leaves, associated to a high chlorophyll content (Chl = 35 ± 5 SPAD units). On the contrary, the highest R/PN ratio (1.75 ± 0.19) in summer is due to a significant PN decrease and increase of R in response to drought. The low PNUE [1.5 ± 0.2 μmol (CO2) g−1 (N) s−1] in this season is indicative of a greater N investment in leaf cell walls which may contribute to limit transpiration. On the contrary, the low R/PN ratio (0.05 ± 0.02) in winter is resulting from the limited enzyme activity of the respiratory apparatus [R = 0.23 ± 0.08 μmol (CO2) m−2 s−1] while the low PNUE [3.5 ± 0.2 μmol (CO2) g−1 (N) s−1] suggests that low temperatures additionally limit plant production. The experiment of the imposed water stress confirms that the C. gymnocarpa growth capability is in conformity with the severe conditions of its natural habitat, likewise as it may be the case with others narrow endemic species that have occupied niches with similar extreme conditions.  相似文献   

12.
A novel nanocomposite material of multiwalled carbon nanotubes (MWCNTs) and room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) was explored and used to construct a novel microperoxidase-11 (MP-11) biosensor for the determination of hydrogen peroxide (H2O2). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the performance of the biosensor. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 0.5 to 7.0 × 10−7 mol L−1 with a correlation coefficient of 0.9949 (n = 9) and a detection limit of 3.8 × 10−9 mol L−1 at 3σ. The modified electrodes displayed excellent electrochemical response, high sensitivity, long-term stability, and good bioactivity and selectivity.  相似文献   

13.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

14.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

15.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

16.
A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3−xPW12O40 (0 ≤ x ≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x = 2 and Cs2-PTA content of 5 wt%. The value is 6 × 10−3 S cm−1 and 1.75 × 10−2 S cm−1 at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6 × 10−7, 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1 × 104/S cm−3 s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.  相似文献   

17.
Gamete production after exposure to hypoxia or sulphide was studied in the marine macroalga Ulva sp. collected in the Sacca di Goro, Italy. Experiments were carried out on discs (12 mm diameter) of thalli cultured in artificial sea water in laboratory at 20 ± 1 °C, 152 μmol m−2 s−1, 16 h photoperiod and 30‰ salinity. Dehydration of thallus was used as inducer of gametogenesis and growth and gamete release during recovery after 10, 20, 30 or 40 min dehydration (20 ± 1 °C, 25% humidity) were analysed. Unlike non-dehydrated thalli the dehydrated ones produced gametes. Thallus discs, non-dehydrated or subjected to 30 min dehydration, were exposed to hypoxia (1.78–4.02 μmol O2 L−1) or sulphide (1 mM) for 3, 5, or 7 days at 20 °C in the dark. Non-dehydrated and dehydrated thalli maintained in normoxic conditions in the dark were the controls. Gamete density was checked by counting at the end of the incubation period and during the subsequent 7 days of recovery under 16 h photoperiod in normoxic conditions. Non-dehydrated thalli maintained in normoxic conditions in the dark released gametes when returned to light suggesting that dark constitutes a stimulus to gamete production. The presence of gametes at the end of 3 days incubation of dehydrated thalli in normoxia demonstrated that gametogenesis can occur even in the dark. However, gametes were not present at the end of incubation in hypoxic and sulphidic conditions. Actually, during hypoxic incubation oxygen consumption in D-thalli was very low, only 0.117 × 10−3 μmol O2 mg−1 h−1 compared to 5.93 × 10−3 μmol O2 mg−1 h−1 in normoxia, denoting a reduction of the metabolic rate that could not sustain gametogenesis. During recovery after incubation in normoxic, hypoxic or sulphidic conditions densities of gametes from dehydrated thalli showed significant differences and resulted after hypoxia > after normoxia > after sulphide. Differences in non-dehydrated thalli were not significant. Dehydrated thalli, still green at the end of the incubation period, underwent blanching in the course of recovery in parallel to gamete production, while non-dehydrated thalli maintained their green colour even after exposure to sulphide. Our findings suggest that macroalga Ulva sp. can survive exposure to darkness, severe hypoxia and high sulphide levels and can maintain gamete production even when the exposure to these stress conditions is joined to dehydration.  相似文献   

18.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

19.
Chen S  Hu Q  Hu M  Luo J  Weng Q  Lai K 《Bioresource technology》2011,102(17):8110-8116
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mg L−1) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38 °C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a qmax, Ks and Ki of 1.73 d−1, 99.20 mg L−1 and 449.75 mg L−1, respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.  相似文献   

20.
The aim of our study was to investigate how denaturing agents commonly used in protein analysis influence the labeling between a reactive molecule and proteins. For this reason, we investigated the labeling of ovalbumin (OVA) as a globular model protein with p-hydroxymercurybenzoate (pHMB) in its native state (phosphate buffer solution) and in different denaturing conditions (8 mol L−1 urea, 3 mol L−1 guanidinium thiocyanate, 6 mol L−1 guanidinium chloride, 0.2% sodium dodecyl sulfate, and 20% methanol). In addition to chemical denaturation, thermal denaturation was also tested. The protein was pre-column simultaneously denatured and derivatized, and the pHMB-labeled denatured OVA complexes were analyzed by size exclusion chromatography (SEC) coupled online with chemical vapor generation–atomic fluorescence spectrometry (CVG–AFS). The number of –SH groups titrated greatly depends on the protein structure in solution. Indeed, we found that, depending on the adopted denaturing conditions, OVA gave different aggregate species that influence the complexation process. The results were compared with those obtained by a common alternative procedure for the titration of –SH groups that employs monobromobimane (mBBr) as tagging molecule and molecular fluorescence spectroscopy as detection technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号