首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three fractions containing hemicellulosic material were obtained by sequential extraction of barley residue (left after removal of water-extractable polysaccharides) with saturated barium hydroxide [Ba(OH)2 fraction], distilled water [Ba(OH)2/H2O fraction], and 1 m sodium hydroxide [NaOH fraction]. The yields of the fractions were 1.6, 1.7, and 2.6% (w/w), respectively, of the dry barley grist. The Ba(OH)2 fraction contained mainly arabinose and xylose, 35.8% and 60.9%, respectively. The Ba(OH)2/H2O fraction in addition to 26.7% Ara and 36.6% Xyl contained also 34.8% Glc. The NaOH fraction was composed of 14.2% Ara, 44.0% Xyl, and 40.9% Glc. The Ba(OH)2/H2O and NaOH extracts were further fractionated by stepwise (NH4)2SO4 precipitation into several subfractions with varying amounts of β-glucans and arabinoxylans. β-Glucans in Ba(OH)2/H2O and NaOH fractions were characterized by high ratios of β-(1→4)/β-(1→3) linkages, large amounts of contiguously linked β-(1→4) segments, and high ratios of cellotriosyl/cellotetraosyl units. The alkali-extractable arabinoxylans, especially those NaOH-extractable, were characterized by a very low degree of substitution, high xylose/arabinose ratio, and a small content of doubly substituted xylose residues. Some populations of arabinoxylans displayed structural features that would enable them to self-associate or to interact with β-glucans.  相似文献   

2.
Arabinogalactan-proteins (AGPs), found in the culture medium of suspension cells of Araucaria angustifolia grown in plant growth regulator-free and plant growth regulator-containing BM media, BM0 and BM2, respectively, were evaluated quantitatively and qualitatively. The concentrated extracellular fractions (CEFs), obtained from suspension cell cultures grown for 20 days in BM0 and BM2 media yielded two fractions, CEF-0 and CEF-2, respectively. CEF-0 and CEF-2 was submitted to selective precipitation using the β-glucosyl Yariv reagent (β-GlcY) to isolate AGPs for structural characterization; this yielded fractions designated CEF-0YPF and CEF-2YPF, respectively. The monosaccharide composition analysis established that samples were composed of Rha, Ara, Gal and uronic acid in a molar ratio 3:37:55:5 (CEF-0YPF) and 1:37:58:4 (CEF-2YPF), although trace amounts (<0.5 mol%) of Xyl were also found. Methylation analysis of CEF-YPF fractions showed similar results for both CEF-0YPF and CEF-2YPF, with non-reducing terminal units of Araf, Arap, Galp, Rhap and Xylp, as well as 3-O-substituted and 5-O-substituted Araf units and 3-O-substituted, 6-O-substituted and 3,6-di-O-susbtituted Galp units. The amino acid composition analysis established Ser, Ala, and Hyp as major amino acids in both samples. In conclusion, this investigation has shown that CEF-0YPF and CEF-2YPF contain macromolecules having typical AGP characteristics, including a Hyp/Ala/Ser-rich protein moiety, a (1  3) and/or (1  6) linked β-d-galactopyranosyl main chain substituted by Gal, Ara, Rha and Xyl residues, and binding affinity for β-GlcY and monoclonal anti-AGP antibodies.  相似文献   

3.
Xylan-degrading enzyme activities were isolated from crude extracts of solid-state cultures of Aspergillus fumigatus Fresenius (Xyl I, Xyl III, Xyl IV and Xyl V) and Humicola grisea var. thermoidea (Xyl II) by chromatographic procedures. The pattern of hydrolysis of different xylans and pulps varied from traces of xylose to xylooligomers. The products formed suggest an endo-type enzyme mode of action. Some enzymes showed debranching and transglycosidase activities.  相似文献   

4.
The receptor tyrosine kinase AXL is a member of the Tyro3-Axl-Mer receptor tyrosine kinase subfamily. AXL affects several cellular functions, including growth and migration. AXL aberration is reportedly a marker for poor prognosis and treatment resistance in various cancers. In this study, we analyzed clinical, pathological, and molecular features of AXL expression in lung adenocarcinomas (LADs). We examined 161 LAD specimens from patients who underwent pulmonary resections. When AXL protein expression was quantified (0, 1+, 2+, 3+) according to immunohistochemical staining intensity, results were 0: 35%; 1+: 20%; 2+: 37%; and 3+: 7% for the 161 samples. AXL expression status did not correlate with clinical features, including smoking status and pathological stage. However, patients whose specimens showed strong AXL expression (3+) had markedly poorer prognoses than other groups (P = 0.0033). Strong AXL expression was also significantly associated with downregulation of E-cadherin (P = 0.025) and CD44 (P = 0.0010). In addition, 9 of 12 specimens with strong AXL expression had driver gene mutations (6 with EGFR, 2 with KRAS, 1 with ALK). In conclusion, we found that strong AXL expression in surgically resected LADs was a predictor of poor prognosis. LADs with strong AXL expression were characterized by mesenchymal status, higher expression of stem-cell-like markers, and frequent driver gene mutations.  相似文献   

5.
 Two mapping populations were used for the analysis of the water-extractable arabinoxylans. One originated from a cross between the hexaploid cultivars ‘Courtot’ and ‘Chinese Spring’ and the other from a cross between an amphiploid (Synthetic) and cv ‘Opata’. Arabinose (Ara), and xylose (Xyl) contents were quantified for the 91 and 76 lines obtained from the two crosses, respectively. Relative viscosity (ηrel) of the wheat flour aqueous extract was evaluated by capillary viscometry. Both crosses gave similar correlation coefficients between sugar contents and relative viscosity. There were strong positive relationships between arabinose, xylose and arabinoxylan contents. The relative viscosity was strongly and positively related to the arabinoxylan content and strongly and negatively related to the Ara/Xyl ratio (arabinose content to xylose content). For one of the two crosses two measurements of relative viscosity were generated from 2 years of consecutive harvesting. As a strong correlation was observed between these two measurements, an important genotypic effect can be deduced for the relative viscosity of water-extractable arabinoxylans. QTL (quantitative trait locus) research did not reveal any chromosomal segments that were strongly implicated in variations in sugar content. However, a QTL was found for relative viscosity values and the Ara/Xyl ratio on the long arm of the 1B chromosome for the two crosses considered. This QTL explained 32–37% of the variations in relative viscosity and 35–42% of the variations in the Ara/Xyl ratio. Genes located at this QTL controlled relative viscosity through modifying the Ara/Xyl ratio. Variations in the Ara/Xyl ratio were supposedly related to differences in the molecular structure of water-extractable arabinoxylans. Minor QTLs were also obtained for relative viscosity and Ara/Xyl ratio, but the chromosomes concerned were different for the two populations evaluated. Received: 5 January 1998 / Accepted: 15 May 1998  相似文献   

6.
Hemicellulosic polymers of cell walls of zea coleoptiles   总被引:11,自引:11,他引:0  
Hemicellulosic polymers comprised about 43% of the primary walls of Zea mays L. cv WF9 × Bear 38 coleoptiles; these polymers were separated by an alkali-gradient into three major fractions. Fraction 1 (GAX I) was solubilized from walls with 0.01 to 0.045 n KOH and consisted of novel glucuronoarabino(galacto)xylans. Nearly six of every seven residues of these xylans were substituted predominantly with single arabinosyl sidegroups. Fraction 2 (GAX II), material released by 0.45 to 0.8 n KOH, was also enriched with glucuronoarabinoxylan, but only two of every three xylose residues was substituted. This xylan was similar to those found in Zea and other Graminaceous species. Both of these xylan fractions contained uronic acid, terminal- and 4-linked galactosyl, and small amounts of 2-, 3-, 5-, and 3,5-linked arabinosyl units. Fraction 3 (MG-GAX) was released by 2.0 to 3.0 n KOH and consisted of about 60% mixed-linked glucan and about 40% glucuronoarabinoxylan. This fraction represented about half of the total hemicellulosic material of the primary walls of these coleoptiles.  相似文献   

7.
Corn fiber was chemically modified with ion-exchanging groups to prepare water-soluble polysaccharides. The soluble fractions were dialyzed using dialysis tubing (1 kDa) and the material retained inside the tubing was filtered through 10 kDa membranes to separate into fractions with molar mass of 1–10 kDa and greater than 10 kDa. The yield of solubilized material of molar mass higher than 10 kDa (47%) and 1–10 kDa (17%) obtained by sulfonation in the presence of NaOH under vacuum was greater than the yields of the treatment at the ambient pressure (43% and 2%) and also in experiments run with only KOH (40% and 5%) or NaOH (38% and 5%) at ambient pressure. The sugar analysis indicated that they were typical glucuronogalactoarabinoxylans containing 46–57% d-xylose (Xyl), 25–33% l-arabinose (Ara) and 6–12% d-galactose (Gal).  相似文献   

8.
Quantitative trait loci (QTLs) affecting sugar composition of the cell walls of maize (Zea mays) pericarp were mapped as an approach to the identification of genes involved in cereal wall biosynthesis. Mapping was performed using the IBM (B73 x Mo17) recombinant inbred line population. There were statistically significant differences between B73 and Mo17 in content of xylose (Xyl), arabinose (Ara), galactose (Gal), and glucose. Thirteen QTLs were found, affecting the content of Xyl (two QTLs), Ara (two QTLs), Gal (five QTLs), Glc (two QTLs), Ara + Gal (one QTL), and Xyl + Glc (one QTL). The chromosomal regions corresponding to two of these, affecting Ara + Gal and Ara on maize chromosome 3, could be aligned with a syntenic region on rice (Oryza sativa) chromosome 1, which has been completely sequenced and annotated. The contiguous P1-derived artificial chromosome rice clones covering the QTLs were predicted to encode 117 and 125 proteins, respectively. Two of these genes encode putative glycosyltransferases, displaying similarity to carbohydrate-active enzyme database family GT4 (galactosyltransferases) or to family GT64 (C-terminal domain of animal heparan synthases). The results illustrate the potential of using natural variation, emerging genomic resources, and homeology within the Poaceae to identify candidate genes involved in the essential process of cell wall biosynthesis.  相似文献   

9.
In this paper, polysaccharides were extracted from the seeds of Plantago asiatica L. with hot water and separated into three fractions PLP-1 (18.9%), PLP-2 (52.6%) and PLP-3 (28.5%) by Sephacryl™ S-400 HR column chomatography. The main fraction PLP-2's structure was elucidated using oxalic acid hydrolysis, partial acid hydrolysis, methylation, GC, GC-MS, 1D and 2D NMR. PLP-2 was composed of Rha, Ara, Xyl, Man, Glc and Gal, in a molar ratio of 0.05:1.00:1.90:0.05:0.06:0.10. Its uronic acid was GlcA. PLP-2 was highly branched heteroxylan which consisted of a β-1,4-linked Xylp backbone with side chains attached to O-2 or O-3. The side chains consisted of β-T-linked Xylp, α-T-linked Araf, α-T-linked GlcAp, β-Xylp-(1 → 3)-α-Araf and α-Araf-(1 → 3)-β-Xylp, etc. Based on these results, the structure of PLP-2 was proposed.  相似文献   

10.
The cell walls of styles of Nicotiana alata Link et Otto (ornamental tobacco; Solanaceae) were analysed chemically and examined histochemically. Cell-wall preparations were obtained from whole styles and from isolated transmitting-tissue cells. The style epidermal cells were shown histochemically to have thick, lignified secondary walls. These walls probably constituted a large proportion of the cell-wall preparation from whole styles as analysis of whole-style walls indicated that the major polysaccharides were xylans and cellulose, which are typical of lignified secondary walls of Magnoliopsida (dicotyledons). Lignification of the style epidermal walls was also demonstrated histochemically in 10 other species (5 genera including Nicotiana) of the sub-family Cestroideae of the Solanaceae, but not in 15 species (9 genera) of the sub-family Solanoideae of the Solanaceae, nor in 3 other species of dicotyledons and 2 species of Liliopsida (monocotyledons). Analysis of the cell-wall preparation from isolated transmitting-tissue cells of N. alata indicated that these contained cellulose, xyloglucans, and pectic polysaccharides, which is typical of primary cell walls of dicotyledons. However, the analysis indicated that the walls also contained an unusually high proportion of Type II arabinogalactans. Staining of the transmitting-tissue cell-wall preparation with β-glucosyl Yariv reagent, a histochemical reagent specific for arabinogalactan proteins, confirmed their presence, which may be related to the role of these cells in secreting the stylar extracellular matrix.  相似文献   

11.
We report the purification and characterization of two thermophilic xylanases from the mesophilic bacteria Cellulomonas flavigena grown on sugarcane bagasse (SCB) as the only carbon source. Extracellular xylanase activity produced by C. flavigena was found both free in the culture supernatant and associated with residual SCB. To identify some of the molecules responsible for the xylanase activity in the substrate-bound fraction, residual SCB was treated with 3 M guanidine hydrochloride and then with 6 M urea. Further analysis of the eluted material led to the identification of two xylanases Xyl36 (36 kDa) and Xyl53 (53 kDa). The pI for Xyl36 was 5.0, while the pI for Xyl53 was 4.5. Xyl36 had a K m value of 1.95 mg/ml, while Xyl53 had a K m value of 0.78 mg/ml. In addition to SCB, Xyl36 and Xyl53 were also able to bind to insoluble oat spelt xylan and Avicel, as shown by substrate-binding assays. Xyl36 and Xyl53 showed optimal activity at pH 6.5, and at optimal temperature 65 and 55°C, respectively. Xyl36 and Xyl53 retained 24 and 35%, respectively, of their original activity after 8 h of incubation at their optimal temperature. As far as we know, this is the first study on the thermostability properties of purified xylanases from microorganisms belonging to the genus Cellulomonas.  相似文献   

12.
A novel β-xylosidase gene of glycosyl hydrolase (GH) family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0–9.0 (incubated at 37°C for 1 h) and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels.  相似文献   

13.
Different solid state fermentation (SSF) sources were tested such as cantaloupe and watermelon rinds, orange and banana peels, for the production of polygalacturonase (PG) and xylanase (Xyl) by Trichoderma harzianum and Trichoderma virens. The maximum production of both PG and Xyl were obtained by T. harzianum and T. virnes grown on cantaloupe and watermelon rinds, respectively. Time course, moisture content, temperature, pH, supplementation with carbon and nitrogen sources were optimized to achieve the maximum production of both PG and Xyl of T. harzianum and T. virens using cantaloupe and watermelon rinds, respectively. The maximum production of PG and Xyl of T. harzianum and T. virens was recorded at 4–5 days of incubation, 50–66% moisture, temperature 28–35°C and pH 6–7. The influence of supplementary carbon and nitrogen sources was studied. For T. harzianum, lactose enhanced PG activity from 87 to 120 units/g solid, where starch and maltose enhanced Xyl activity from 40 to 55–60 units/g solid for T. virnes. Among the nitrogen sources, ammonium sulphate, ammonium nitrate, yeast extract and urea increased PG activity from 90 to 110–113 units/g solid for T. harzianum. Similarly, ammonium chloride, ammonium sulphate and yeast extract increased Xyl activity from 45 to 55–70 units/g solid for T. virens.  相似文献   

14.
正交实验确定提取工艺后,用热水提取法得到苦瓜多糖(MCP).对MCP进行DEAE-32离子交换层析分离,得到3个多糖组分MCP1、MCP2和MCP3. 进一步采用Sephacryl S-400凝胶层析进行分离,经凝胶层析和高效液相色谱检测表明,MCP1、MCP2为均一性多糖组分.通过高效液相凝胶色谱法测定了两者的相对分子质量分别为1.16×106和7.45×105.用PMP衍生化法测定其单糖,结果表明: MCP1系由Man、Rham、GlcUA、GalUA、Glu、Gal、Xyl、Ara等单糖组成的杂多糖,摩尔比为1.03:2.93:1.00:14.95:2.16:30.70:2.85:4.50.MCP2系由Rham、GalUA、Gal、Xyl、Ara等单糖组成的杂多糖,对应的摩尔比为1.63:21.88:4.66:1.00:1.29.紫外光谱表明该多糖不含蛋白质和核酸.  相似文献   

15.
Rye arabinoxylan, with an initial arabinose to xylose (Ara/Xyl) ratio of 0.50, was enzymatically modified with alpha-L-arabinofuranosidase. Different enzyme dosages were used to prepare arabinoxylan samples with a gradient of arabinose content varying from Ara/Xyl ratio 0.50 to 0.20. The degree of polymerization of the arabinoxylans was not affected by the enzymatic treatment, as detected with SEC-MALLS. Arabinoxylan samples with an Ara/Xyl ratio of 0.30 and below agglomerated in a water solution as seen by changes in light scattering. All samples, however, formed cohesive films upon drying, without addition of external plasticizers. The film from untreated arabinoxylan was completely amorphous; whereas films of the enzyme-treated arabinoxylans were semicrystalline with an increasing degree of crystallinity with decreasing arabinose content as determined by WAXS. Oxygen permeability measurements of the films showed that decreased arabinose content also resulted in lower oxygen permeability of the films. All films were strong and relatively stiff, but showed variations in strain at break. The moderately debranched film with an Ara/Xyl ratio of 0.37 had highest strain at break among all the films tested, yet was stiff and strong. This material also exhibited yielding and had stress/strain behavior similar to synthetic semicrystalline polymers, with a tendency to strain-induced crystallization. Such a combination of mechanical properties combined with oxygen barrier properties is very attractive for packaging applications.  相似文献   

16.
Suspension cells of kidney bean were grown for 42 d in MS medium supplemented with growth regulators (2.0 mgL-1 2,4-D and 0.5 mgL-1 kinetin) or without At the stationary growth phase (42 d), the sugars were fractionated into the symplastic (ethanol and starch) and apoplastic [low-molecular pectin (lm-pectin), high-molecular pectin (hm-pectin), hemicellulose, and cellulose] sugars. The neutral sugars (NS) of hm-pectin and hemicellulose fractions were analyzed by GLC. The growth of the suspension cells in the liquid MS media, in terms of settled cell volume (SCV), remained similar, to the end of the experiment, irrespective of the presence or absence of growth regulators, indicating the nonnecessity of the exogenous growth regulators for the subculture. Total sugar (TS) of the ethanol fraction and NS of the Im-pectin of the suspension cells grown in the medium with growth regulators were higher than in the medium without growth regulators. However, starch content in the starch fraction and uronic acid (UA) content of the Im-pectin fraction did not exhibit any differences. From these results, it was suggested that the growth regulators modulated the structure of the cell wall polysaccharide. Analysis of the NS composition of the hm-pectin fractions revealed that the Rha, Arb, and Gal contents in the presence of growth regulators were higher than in the absence, while the Xyl, Man, and Glc contents in the presence of growth regulators were higher than in the absence, indicating the turnovers of rhamnogalacturonan and/or arabinogalactan. On the other hand, analysis of NS composition of hemicellulose fractions revealed that the Ara and Glc contents in the presence of growth regulators was higher than in the absence, whereas Xyl and Glc contents were nearly consistent, indicating the turnovers of arabinaogalactan I or II. The cellulose contents remained similar, irrespective of the presence (19.1%) or absence (18.7%) of growth regulators.  相似文献   

17.
Aims: To characterize the duel activities of a glycosyl hydrolase family 3 β‐glucosidase/xylosidase from rumen bacterial metagenome and to investigate the capabilities of its β‐d ‐xylosidase activities for saccharification of hemicellulosic xylans. Methods and Results: A β‐glucosidase/xylosidase gene RuBGX1 was cloned from yak (Bos grunniens) rumen using the metagenomic technology. Recombinant RuBGX1, expressed in Escherichia coli, demonstrated high hydrolytic activities on both p‐nitrophenyl‐β‐d ‐glucopyranoside (pNP‐Glc) and p‐nitrophenyl‐β‐d ‐xylopyranoside (pNP‐Xyl) substrates. Analysis of the kinetic properties indicated that RuBGX1 had a lower affinity for pNP‐Glc substrate as the Km was 0·164 mmol l?1 for pNP‐Glc and 0·03 mmol l?1 for pNP‐Xyl at pH 6·0 and 50°C, respectively. The capabilities of RuBGX1 β‐xylosidase for hydrolysis of xylooligosaccharide substrates were further investigated using an endoxylanase‐coupled assay. Hydrolysis time courses illustrated that a significant increase (about 50%) in the reducing sugars, including xylobiose, xylotriose and xylotetraose, was achieved by supplementing endoxylanase with RuBGX1. Enzymatic product analysis using high‐performance anion‐exchange chromatography‐pulsed amperometric detection showed that RuBGX1 could release xyloses from intermediate xylooligosaccharides produced by endoxylanase. Conclusions: The RuBGX1 shows β‐glucosidase activity in hydrolysis of cello‐oligosaccharides; meanwhile, it has β‐xylosidase activity and functions synergistically with endoxylanase to promote the degradation of hemicellulosic xylans. Significance and Impact of the study: This was the first to report the β‐xylosidase activity of family 3 β‐glucosidase/xylosidase functioned in the degradation of hemicellulosic xylans. The bifunctional β‐glucosidase/xylosidase property of RuBGX1 can be used in simultaneous saccharification of cellulose and xylan into fermentable glucose and xylose.  相似文献   

18.
Antimicrobial and antiviral activities of the fractions from Scutia buxifolia stem bark and leaves were evaluated. Best antimicrobial results occurred with the ethyl acetate (EA) and n-butanolic (NB) fractions from the leaves against Micrococcus sp. (minimal inhibitory concentration—MIC = 62.5 μg/ml), and NB fraction from stem bark and leaves against Klebsiella pneumoniae and Enterococcus faecalis (MIC = 62.5 μg/ml). The most active fractions were selected and fractioned into silica column to perform an in vitro antibiofilm assay, which evidenced subfractions EA2 and EA3 as the more active against Candida albicans (biofilm inhibitory concentration—BIC = 582 ± 0.01 μg/ml) and Staphylococcus aureus (BIC = 360 ± 0.007 μg/ml), respectively. The NB (selectivity index—SI = 25.78) and the EA (SI = 15.97) fractions from the stem bark, and the EA (SI = 14.13) fraction from the leaves exhibited a potential antiviral activity towards Herpes Simplex Virus type 1 whereas EA2 and EA3 subfractions from leaves (SI = 12.59 and 10.06, respectively), and NB2 subfraction from stem bark (SI = 12.34) maintained this good activity. Phenolic acids and flavonoids (gallic acid, chlorogenic acid, caffeic acid, rutin, isoquercitrin, quercitrin and quercetin) were identified by HPLC and may be partially responsible for the antimicrobial and antiherpes activities observed. The results obtained in this study showed that Scutia buxifolia has antibiofilm and anti-herpetic activities and that these properties are reported for the first time for this species.  相似文献   

19.
This study was undertaken to investigate the effect of arabinose content on film properties. The substrate used was a rye arabinoxylan that had an Ara/Xyl ratio of 0.52 and an average number molecular weight of 305 kDa. Oxalic acid was used to attempt selective removal of the arabinose substituents on the xylan main chain. The debranching of the polymer was coupled with a decrease in molecular weight. The effect of reaction conditions on the decrease in arabinose content and loss of molecular weight was investigated. Optimal conditions were selected using an experimental design. Treatment at lower temperature for longer period of times resulted in debranching with less degradation of the main chain. As the Ara/Xyl ratio was lowered, aggregates began to form in an interval of the Ara/Xyl ratio between 0.31 and 0.23 in a water solution. Precipitation occurred below an Ara/Xyl ratio of 0.1. Thus, removal of arabinose substituents results in a gradual association of unsubstituted chains. There is a linear correlation between arabinose substitution and the moisture content of arabinoxylan at 98% RH. A decrease in arabinose content resulted in the loss of a plasticizing effect, as determined by dynamic mechanical analysis, which is correlated to water binding capacity.  相似文献   

20.
The filamentous blue-green alga Nostoc calcicola Geitler, strain 79WA01, showed a peak production of 70% of its biomass as a mixture of exocellular proteoglycan complexes, containing 3–30% of a polypeptide moiety and>70% of a complex glycuronoglycan. The former contained high proportions of Asp, Glu, Arg, and amido-NH3, in addition to 35% of “hydrophobic” amino-acids. The latter varied in composition in different fractions: GalA (2.5–10.3%), GlcA (4.7–11.5%), Glc (11.7–39.0%), Xyl (5.7–17.9%), Man (2.7–9.5%), Gal (5.7–9.5%), Fuc (1.5–11.1%), Ara (1.9–4.3%), and Rha (1.4–4.4%). None of the fractions showed a stoichiometric ratio of sugar residues.

Palmelloid cells of three unicellular green soil-algae of the genus Chlamydomonas yielded 70% of their dry weight as capsular mucilage. About 50% of the sodium salt of this material was soluble in water, and contained 3–12% of polypeptide and 88–97% of glycuronoglycan (GlcA:Glc:Xyl = 1:1:3 for C. humicola Lucksch, and GlcA:Gal = 1:2 for C. peterfii Gerloff and C. sajao Lewin). These categorical differences in sugar composition, together with narrow composition distributions, suggested regular structures for the glycuronoglycans. The remainder of the mucilages contained essentially the same glycuronoglycan chains, but a higher proportion of polypeptide. These materials did not form true solutions in water, but dispersed as microgel particles.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号