首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DFT optimization studies of 90 syn α-maltotetraose (DP-4) amylose fragments have been carried out at the B3LYP/6-311++G∗∗ level of theory. The DP-4 fragments studied include V-helix, tightly bent conformations, a boat, and a 1C4 conformer. The standard hydroxymethyl rotamers (gg, gt, tg) were examined at different locations in the residue sequence, and their influence on the bridge conformations ?/ψ values and conformer energy is described. Hydroxyl groups were considered to be homodromic, that is, they are either in the all clockwise, ‘c’, or all counterclockwise, ‘r’. Energy differences between conformations are examined in order to assess the stability of the different conformations and to identify the sources of energy that dictate amylose polymer formation. A small nearly cyclic compact structure is of low energy as one would expect when these flexible molecules are studied in vacuo. Many conformations in which the only differences are a single hydroxymethyl variation in the residue sequence show similar energies and bridge conformations, with trends being a result of the hydroxymethyl as well as hydroxyl orientation. In general the ‘c’ structures are of lower energy than the ‘r’ structures, although this is only true for the in vacuo state. The solvent dependence on conformational preference of several low-energy DP-4 structures was investigated via the continuum solvation method COSMO. These results suggest that the ‘r’ structures may be favored for fully solvated molecules.  相似文献   

3.
A problem of conformations of carbohydrate chains of glycoconjugates-glycoproteins and glycolipids--is reviewed. Experimental data (NMR, X-Ray) and theoretical conformational analysis data are discussed. Spatial structures of O-linked oligosaccharides from blood-group glycoproteins, N-linked oligosaccharides of different types (oligomannosidic, complex, hybrid, bisect) and carbohydrate chains of glycosphingolipids are considered.  相似文献   

4.
The conformations in solution of acyclic carbohydrate derivatives having four contiguous asymmetric centers in all eight diastercoisomeric forms have been studied by 1H-n.m.r. spectroscopy. The 250-MHz, 1H-n.m.r. spectra for solutions in chloroform-d of eight penta-O-acetylaldohexose dimethyl acetals, and the corresponding diethyl dithioacetals, furnished a complete set of chemical shifts and proton-proton spin-couplings that are interpreted in terms of conformational compositions at room temperature. The galacto and manno derivatives adopt planar, extended conformations, whereas the other six stereoisomers all adopt one or more non-extended (“sickle”) conformations. The results are interpreted on the basis of the avoidance of parallel 1,3-interactions of substituents. The conformational assignments are correlated with observations made previously for aldopentose analogs. An assessment is made of the extent to which valid conformational predictions may be advanced for four-center, and longer, asymmetrically substituted chains, based on observations made for shorter-chain analogs.  相似文献   

5.
Previous analyses of the complementarity-determining regions (CDRs) of antibodies have focused on a small number of “canonical” conformations for each loop. This is primarily the result of the work of Chothia and coworkers, most recently in 1997. Because of the widespread utility of antibodies, we have revisited the clustering of conformations of the six CDR loops with the much larger amount of structural information currently available. In this work, we were careful to use a high-quality data set by eliminating low-resolution structures and CDRs with high B-factors or high conformational energies. We used a distance function based on directional statistics and an effective clustering algorithm with affinity propagation. With this data set of over 300 nonredundant antibody structures, we were able to cover 28 CDR-length combinations (e.g., L1 length 11, or “L1-11” in our CDR-length nomenclature) for L1, L2, L3, H1, and H2. The Chothia analysis covered only 20 CDR-lengths. Only four of these had more than one conformational cluster, of which two could easily be distinguished by gene source (mouse/human; κ/λ) and one could easily be distinguished purely by the presence and the positions of Pro residues (L3-9). Thus, using the Chothia analysis does not require the complicated set of “structure-determining residues” that is often assumed. Of our 28 CDR-lengths, 15 have multiple conformational clusters, including 10 for which the Chothia analysis had only one canonical class. We have a total of 72 clusters for non-H3 CDRs; approximately 85% of the non-H3 sequences can be assigned to a conformational cluster based on gene source and/or sequence. We found that earlier predictions of “bulged” versus “nonbulged” conformations based on the presence or the absence of anchor residues Arg/Lys94 and Asp101 of H3 have not held up, since all four combinations lead to a majority of conformations that are bulged. Thus, the earlier analyses have been significantly enhanced by the increased data. We believe that the new classification will lead to improved methods for antibody structure prediction and design.  相似文献   

6.
The structural dynamics of the flexible neuropeptide galanin in solution were studied by Förster resonance energy transfer measurements at different temperatures by time-resolved fluorescence spectroscopy to determine its conformational heterogeneity. Endogenous tryptophan at position 2 acted as the fluorescent donor and the non fluorescent acceptor dinitrophenyl or the fluorescent acceptor dansyl were selectively attached to lysine 25 in porcine galanin. The coexistence of different structures of the neuropeptide galanin in trifluoroethanol solution was revealed by the model independent analysis of the distribution of relaxation times from the time-resolved resonance energy transfer data. Multiple conformational states are reflected by distinct end-to-end distance populations. The conformations differ in mean donor-acceptor distance by about 15 Å, and are consistent with the extended and folded backbone conformations of two α-helical regions separated by a flexible hinge. The effect that the labelling of galanin has on binding to the receptor was also evaluated. DNP-galanin showed the same high affinity to galanin receptors as unlabelled galanin, whereas DNS-galanin had significantly reduced affinity.  相似文献   

7.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   

8.
During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.  相似文献   

9.
The classical approaches for protein structure prediction rely either on homology of the protein sequence with a template structure or on ab initio calculations for energy minimization. These methods suffer from disadvantages such as the lack of availability of homologous template structures or intractably large conformational search space, respectively. The recently proposed fragment library based approaches first predict the local structures, which can be used in conjunction with the classical approaches of protein structure prediction. The accuracy of the predictions is dependent on the quality of the fragment library. In this work, we have constructed a library of local conformation classes purely based on geometric similarity. The local conformations are represented using Geometric Invariants, properties that remain unchanged under transformations such as translation and rotation, followed by dimension reduction via principal component analysis. The local conformations are then modeled as a mixture of Gaussian probability distribution functions (PDF). Each one of the Gaussian PDF’s corresponds to a conformational class with the centroid representing the average structure of that class. We find 46 classes when we use an octapeptide as a unit of local conformation. The protein 3-D structure can now be described as a sequence of local conformational classes. Further, it was of interest to see whether the local conformations can be predicted from the amino acid sequences. To that end, we have analyzed the correlation between sequence features and the conformational classes.  相似文献   

10.
Conformational potential energy hypersurfaces, PES, for the terminally blocked L-Cysteine, L,L-Cystine and D,L-Cystine have been analyzed by means of molecular mechanics in combination with the programs ROSE, CICADA, PANIC and COMBINE. Low energy conformations and conformational transitions, conformational channels, have been located. Global and fragmental flexibility and conformational softness have been calculated for each conformer as well as for the entire molecule. The PES analyses were used for simulation of conformational movement based on Boltzmann probability of the points obtained on the PES. Boltzmann travelling revealed interesting correlated conformational movement where three or even more dihedral angles changed simultaneously. It could be shown that conformational behavior and flexibility were strongly influenced by the absolute configurations of the amino acids in the peptides.  相似文献   

11.
C. Allen Bush 《Biopolymers》1982,21(3):535-545
Analysis of the amino acid sequence of glycoproteins has suggested the β-turn as a likely site of glycosylation in glycoproteins. According to this model, the peptide chain traverses the interior of a globular protein, reversing its direction at the protein surface, a likely point for the attachment of hydrophilic carbohydrate residues. In order to search for plausible conformations of glycosylated β-turns in asparagine-linked glycoproteins, we have adapted the conformational energy calculation method of Scheraga and coworkers for use in carbohydrates. The parameters for nonbonded and hydrogen-bonded interactions have been published, and electrostatic parameters are derived from a CNDO calculation on a model glycopeptide. Our results indicate that the orientation of the glycosyl amide bond having the amide proton nearly trans to the anomeric proton of the sugar has the lowest energy. Although CD and nmr experiments in our laboratory have consistently found this conformation, our calculations show the conformation having these two protons in a cis relationship to lie very close in energy. Calculations on the glycopeptide linkage model, α-N-acetyl, δ-N(2-acetamido-1,2-dideoxy-β-D -glucopyranosyl)-N′-methyl-L -asparaginyl amide show that several distinct geometries are allowed for glycosylated β-turns. For a type I β-turn, three conformations of the glycosylated side chain are found within 4 kcal of the minimum, while two conformations of the glycosylated side chain are allowed for a type II turn. The hydrogen-bonded C7 conformation is also allowed. Stereoviews of the low-energy conformations reveal no major hydrogen-bonding interaction between the peptide and sugar.  相似文献   

12.
The formation of uranium complexes of novel ligands belonging to phosphorylated 2-oxo-1,2-azaphospholane series, namely 2-ethoxy-1-diethoxyphosphoryl-2-oxo-1,2λ5-azaphospholane (1a) and both individual R,R- and R,S-diastereomers of the related 2-oxo-2-phenyl-1,2λ5-azaphospholanes 1b,c with different surrounding at the exocyclic phosphorus atom, has been studied. The structures of the complexes of ML composition obtained in the reaction with uranyl nitrate in 1:1 ratio were found to depend on the difference in donor properties of the oxygen atom of endo- and exocyclic phosphoryl groups. The ligand 1a possessing the greater difference, serves as O-monodentate one with metal-oxygen bonding via the endocyclic PO function while both isomers of 1b,c coordinate to uranyl cation in a O,O-bidentate fashion. In solutions the ML complexes reacted with air oxygen to afford (μ2-peroxo)-bridged uranium complexes [{UO2(L)NO3}22-O2)] which structures were confirmed by X-ray crystallography data.  相似文献   

13.
The unprecedented performance of Deepmind’s Alphafold2 in predicting protein structure in CASP XIV and the creation of a database of structures for multiple proteomes and protein sequence repositories is reshaping structural biology. However, because this database returns a single structure, it brought into question Alphafold’s ability to capture the intrinsic conformational flexibility of proteins. Here we present a general approach to drive Alphafold2 to model alternate protein conformations through simple manipulation of the multiple sequence alignment via in silico mutagenesis. The approach is grounded in the hypothesis that the multiple sequence alignment must also encode for protein structural heterogeneity, thus its rational manipulation will enable Alphafold2 to sample alternate conformations. A systematic modeling pipeline is benchmarked against canonical examples of protein conformational flexibility and applied to interrogate the conformational landscape of membrane proteins. This work broadens the applicability of Alphafold2 by generating multiple protein conformations to be tested biologically, biochemically, biophysically, and for use in structure-based drug design.  相似文献   

14.
Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis.  相似文献   

15.
NMR relaxation dispersion measurements report on conformational changes occurring on the μs-ms timescale. Chemical shift information derived from relaxation dispersion can be used to generate structural models of weakly populated alternative conformational states. Current methods to obtain such models rely on determining the signs of chemical shift changes between the conformational states, which are difficult to obtain in many situations. Here, we use a “sample and select” method to generate relevant structural models of alternative conformations of the C-terminal-associated region of Escherichia coli dihydrofolate reductase (DHFR), using only unsigned chemical shift changes for backbone amides and carbonyls (1H, 15N, and 13C′). We find that CS-Rosetta sampling with unsigned chemical shift changes generates a diversity of structures that are sufficient to characterize a minor conformational state of the C-terminal region of DHFR. The excited state differs from the ground state by a change in secondary structure, consistent with previous predictions from chemical shift hypersurfaces and validated by the x-ray structure of a partially humanized mutant of E. coli DHFR (N23PP/G51PEKN). The results demonstrate that the combination of fragment modeling with sparse chemical shift data can determine the structure of an alternative conformation of DHFR sampled on the μs-ms timescale. Such methods will be useful for characterizing alternative states, which can potentially be used for in silico drug screening, as well as contributing to understanding the role of minor states in biology and molecular evolution.  相似文献   

16.
The PAS-LOV domain is a signal-transducing component found in a large variety of proteins that is responsible for sensing different stimuli such as light, oxygen, and voltage. The LOV protein VVD regulates blue light responses in the filamentous fungi Neurospora crassa. Using photocoupled, time-resolved small-angle X-ray scattering, we extract the solution protein structure in both dark-adapted and light-activated states. Two distinct dark-adapted conformations are detected in the wild-type protein: a compact structure that corresponds to the crystal structure of the dark-state monomer as well as an extended structure that is well modeled by introducing conformational disorder at the N-terminus of the protein. These conformations are accentuated in carefully selected variants, in which a key residue for propagating structural transitions, Cys71, has been mutated or oxidized. Despite different dark-state conformations, all proteins form a common dimer in response to illumination. Taken together, these data support a reaction scheme that describes the mechanism for light-induced dimerization of VVD. Envelope reconstructions of the transient light-state dimer reveal structures that are best described by a parallel arrangement of subunits that have significantly changed conformation compared to the crystal structure.  相似文献   

17.
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution.  相似文献   

18.
Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG) 3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG) 3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.  相似文献   

19.
αD -N-acetyl neuraminic acid (Neu5Ac, sialic acid) is a commonly occurring carbohydrate residue in various cell surface glycolipids and glycoproteins. This residue is linked terminally or internally to Gal residues via an α(2 → 3) or α(2 → 6) linkage. In the cell surface receptor, sialyl-LewisX, a terminal α(2 → 3) linkage is present. Previous studies from our laboratory have shown that in solution LewisX adopts a relatively rigid structure. In order to model the Neu5Ac residue, vacuum molecular dynamics of this monosaccharide were compared with simulations that explicitly include solvent water. The dynamical average of the monosaccharide conformation obtained from the two simulations was similar. Vacuum calculations for the disaccharide Neu5Ac α(2 → 3) Gal β-O-methyl show that a number of low energy minima are accessible to this disaccharide. Molecular dynamics simulations starting from the low energy minima show conformational transitions with a time scale of 10–50 ps among several of the minima while large barriers between other minima prevent transitions on the time scale studied. Simulations of this disaccharide in the presence of solvent show fewer conformational transitions, illustrating a dampening effect of the solvent that has been observed in some other studies. Our results are most consistent with an equilibrium among multiple conformations for the Neu5Ac α(2 → 3) Gal β linkage. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号