首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sugar-aza-crown ether (SAC)-based fluorescent sensor 4 was prepared. It contains a pyrene as the fluorophore and its fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 4 exhibits highly selective recognition toward Cu2+ and Hg2+ ions among a series of tested metal ions in methanol solution. The association constants for 4*Cu2+ and 4*Hg2+ in methanol solution were calculated to be 7.4 × 101 M−1 and 4.4 × 103 M−1, respectively. Chemosensor 4 formed complexes with the Cu2+ or Hg2+ ion at a 1:1 ligand-to-metal ratio with a detection limit of 1.3 × 10−4 M Cu2+ and 1.26 × 10−5 M Hg2+, respectively.  相似文献   

2.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A fluorescent sensor, 5, based upon the sugar-aza-crown ether structure with two anthracenetriazolymethyl groups was prepared and its fluoroionophoric properties toward transition metal ions were investigated. In methanol, the sensor exhibits highly selective recognition of Cu2+ and Hg2+ ions among a series of tested metal ions. The association constant for Cu2+ and Hg2+ in methanol was calculated to be 4.0 × 105 M−1 and 1.1 × 105 M−1, respectively. The detection limits for the sensing of Cu2+ and Hg2+ ions were 1.39 × 10−6 M and 1.39 × 10−5 M, respectively.  相似文献   

4.
A fluorescent chemosensor, Py-His, based on histidine was easily synthesized in solid phase synthesis. Py-His displayed a highly sensitive ratiometric response to Zn(II) with potent binding affinity (Ka = 1.17 × 1013 M?2) in aqueous solutions. The detection limit of Py-His for Zn(II) was calculated as 80.8 nM. Moreover, Py-His distinguished Zn(II) and Hg(II) by different ratiometric response type; the chemosensor showed a more enhanced increase of excimer emission intensity to Zn(II) than Hg(II). Upon addition of Ag(I) and Cu(II), Py-His showed a turn-off response mainly due to the quenching effect of these metal ions. The binding stoichiometry (2:1 or 1:1) of Py-His to target metal ions played a critical role in the fluorescent response type (ratiometric and turn off response) to target metal ions. The role of imidazole group of Py-His for ratiometric detection of Zn(II) was proposed by pH titration experiments.  相似文献   

5.
A sugar-aza-crown ether (SAC)-based fluorescent sensor 4 was prepared. It contains a pyrene as the fluorophore and its fluoroionophoric properties toward transition metal ions were investigated. Chemosensor 4 exhibits highly selective recognition toward Cu(2+) and Hg(2+) ions among a series of tested metal ions in methanol solution. The association constants for 4*Cu(2+) and 4*Hg(2+) in methanol solution were calculated to be 7.4×10(1)M(-1) and 4.4×10(3)M(-1), respectively. Chemosensor 4 formed complexes with the Cu(2+) or Hg(2+) ion at a 1:1 ligand-to-metal ratio with a detection limit of 1.3×10(-4)M Cu(2+) and 1.26×10(-5)MHg(2+), respectively.  相似文献   

6.
In order to investigate the substituent effects on their conformations and spectroscopic properties, a series of pyridin-4-ylindolizine modified beta-cyclodextrin derivatives were studied by 2D NMR (ROESY spectra) in D2O, circular dichro?sm, and fluorescence spectroscopy. It was found that the linked indolizin-beta-cyclodextrin compounds exhibited two types of conformations, as a function of the substituent, in which fluorescent moieties formed either an intramolecular complex or were not included in the hydrophobic cavity of the macrocycle. Under addition of organic guest species in a phosphate buffer at neutral pH, the variation of emission fluorescence intensity showed that these compounds are of significance for detection of volatile organic molecules and adamantane derivatives and might be used as molecular chemosensor.  相似文献   

7.
Fluorescent DNA probes with 1,6-hexanediyl as the linker between two pyrenes, phenylpyrenes or phenylethynyl pyrene fluorophores were synthesized (Py-1, Py-2 and Py-3) and their interactions with DNA were studied by UV–vis absorption spectra, fluorescence spectra and viscosity measurements. The probes show red-shifted emission compared with pyrene (up to 20 nm). We found the interaction of these probes with DNA can be either intercalation or groove binding. Ratiometric fluorometry (ratio of the monomer and excimer emission intensity versus concentration of DNA) was achieved with these probes for DNA quantification (with limit of detection, LOD, up to 0.1 μg/mL). We also found that the undesired oxygen sensitivity of the emission intensity of pyrene fluorophore can be greatly suppressed by extending the π-conjugation framework of pyrene (the IAr/Iair value is decreased from 8.10 for pyrene to less than 2.20 for the DNA probes described herein).  相似文献   

8.
Herein, a boronic acid-based sensor was reported selectively to recognize Pd2+ ion. The fluorescence intensity increased 36-fold after sensor binding with 2.47 × 10−5 M of Pd2+ ion. It was carried out in the 99% aqueous solution for binding tests, indicating sensor having good water solubility. In addition, it is discernible that Pd2+ ion turned on the blue fluorescence of sensor under a UV–lamp (365 nm), while other ions (Ag+, Al3+, Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, Fe3+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ and Zn2+) did not show the similar change. Furthermore, sensor has a low limit of detection (38 nM) and high selectivity, which exhibits the potential for the development of Pd2+ recognition in practical environments.  相似文献   

9.
We prepared an aminothiourea‐derived Schiff base (DA) as a fluorescent chemosensor for Hg2+ ions. Addition of 1 equiv of Hg2+ ions to the aqueous solution of DA gave rise to an obvious fluorescence enhancement and the subsequent addition of more Hg2+ induced gradual fluorescence quenching. Other competing ions, including Pb2+, Cd2+, Cr3+, Zn2+, Fe2+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+, did not induce any distinct fluorescence changes, indicating that DA can selectively detect Hg2+ ions in aqueous solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A novel and sensitive biosensor based on aptamer and pyrene-labeled fluorescent probes for the determination of K+ was developed. The aptamer was used as a molecular recognition element and a partially complementary oligonucleotide with the aptamer was labeled by pyrene moieties at both ends to transduce the binding event of K+ with aptamer. In the presence of K+, the complementary oligonucleotides were displaced from aptamers, which was accompanied by excimer fluorescence of pyrenes because the self-hairpin structure of the complementary oligonucleotide brought pyrene moieties into close proximity. However, it gave only monomer emission in the absence of K+. Under optimum conditions, the relative fluorescence intensity of pyrene was proportional to the concentration of K+ in the range of 6.0 × 10−4 to 2.0 × 10−2 M. A detection limit of 4.0 × 10−4 M was achieved. Moreover, this method was able to detect K+ with high selectivity in the presence of Na+, , Mg2+, and Ca2+ ions of biological fluids. In brief, the assay may have great potential applications, especially in a biological environment because of its simplicity, sensitivity, and specificity.  相似文献   

11.
A water-soluble ribosyl-based fluorescent sensor 5 was prepared. The sensor contains an anthracene as the fluorophore and a set of complex groups as recognition sites, which bears two triazole ring spacers linked to two ribosyl carboxylic acids groups. The association constants of 5 in water are 2.15 × 105 M−1 and 9.57 × 104 M−1 for Cu2+ and Hg2+ ions, respectively, and both metals formed complexes with 5 at a 1:1 metal to ligand ratio. The binding of 5 to Cu2+ shows a broad pH range (5-10) and a low detection limit (57 ppb) in water, thus indicating it an efficient and promising cation probe.  相似文献   

12.
A novel fluorescent DNA probe containing pyrene-labeled C8 alkylamino-substituted 2′-deoxyguanosine was designed in order to discriminate single stranded and double stranded regions in DNA. This fluorescent sensor was used for the design of practically useful 3′- and 5′-ends free self-quenched molecular beacon (MB). Unique MB detectable by pyrene excimer fluorescence was also demonstrated.  相似文献   

13.
A novel peptidyl chemosensor (PySO2-His-Gly-Gly-Lys(PySO2)-NH2, 1) was synthesized by incorporation of two pyrene (Py) fluorophores into the tetrapeptide using sulfonamide group. Compound 1 exhibited selective fluorescence response towards Hg(II) over the other metal ions in aqueous buffered solutions. Furthermore, 1 with the potent binding affinity (Kd = 120 nM) for Hg(II) detected Hg(II) without interference of other metal ions such as Ag(I), Cu(II), Cd(II), and Pb(II). The binding mode of 1 with Hg(II) was investigated by UV absorbance spectroscopy, 1H NMR titration experiment, and pH titration experiment. The addition of Hg(II) induced a significant decrease in both excimer and monomer emissions of the pyrene fluorescence. Hg(II) interacted with the sulfonamide groups and the imidazole group of His in the peptidyl chemosensor and then two pyrene fluorophores were close to each other in the peptide. The decrease of both excimer and monomer emission was mainly due to the excimer/monomer emission change by dimerization of two pyrene fluorophores and a quenching effect of Hg(II).  相似文献   

14.
A water-soluble 1,8-naphthalimide-based fluorescent chemosensor 1, bearing two acetic carboxylic moieties, exhibited high selectivity and sensitivity for recognition of Hg(2+) ion in water over other heavy and transition metal (HTM) ions with fluorescent enhancement. An increase in the fluorescent intensity at 562 nm was due to the formation of a 1:1 1-Hg(2+) inclusion complex.  相似文献   

15.
Here, a biosensor based on a quadruplex-forming aptamer for the determination of potassium ion (K+) is presented. The aptamer was used as a molecular recognition element; it was adjacent to two arm fragments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP) that is complementary of the arm fragment sequence. In the presence of K+, the aptamer was displaced from the STP, which was accompanied by decreased signal. The quenching percentage of fluorescence intensity was proportional to the concentration of K+ in the range of 0.05 to 1.4 mM. A detection limit of 0.014 mM was achieved. Furthermore, other metal ions, such as Na+, Li+, NH4+, Mg2+, and Ca2+, caused no notable interference on the detection of K+.  相似文献   

16.
A ratiometric fluorescent sensor was obtained by solid-phase synthesis of a peptide singly labeled at its N-terminus with a 3-hydroxychromone (3HC) derivative, an environmentally sensitive fluorophore with a two-band emission. The construct contains the binding site recognized by an antibody fragment, scFv1F4Q34S, with nanomolar (nM) affinity. The dye only marginally affected the kinetic and equilibrium binding parameters of the scFv-peptide interaction, as measured by surface plasmon resonance. On interaction with the antibody fragment, the sensor showed up to 47% change in the ratio of its two emission bands, indicating an enhanced screening of the 3HC fluorophore from bulk water. Competition with two unlabeled peptides of different lengths led to a dynamic displacement of the construct governed by the relative binding constants. Calibration showed that the response is proportional to the ratio of scFv1F4Q34S to labeled peptide. The detection limit of scFv1F4Q34S was 15 nM. In a more complex medium (100 μg/ml bovine serum albumin), the scFv could be detected in the 50- to 100-nM range. This work demonstrates that, with the perspective of further improvements of the dye spectroscopic properties, fluorescent ratiometric sensing based on small synthetic peptides represents a promising tool for quantitative target detection.  相似文献   

17.
A new Schiff base receptor 1 was synthesized and its photophysical properties were investigated by absorption, emission and excitation techniques. Furthermore, its chromogenic and fluorogenic sensing abilities towards various metal ions were examined. Receptor 1 selectively detects Cu2+ ion through fluorescence quenching and detection was not inhibited in the presence of other metal ions. From fluorescence titration, the limit of detection of receptor 1 as a fluorescent ‘turn‐off’ sensor for the analysis of Cu2+ was estimated to be 0.35 μM.  相似文献   

18.
A new colorimetric and fluorescent probe MNTPZ based on 1H‐imidazo[4,5‐b]phenazine derivative has been designed and synthesized for successive detection of Ag+ and I?. The probe MNTPZ shows selective colorimetric response by a change in color from yellow to orange and “turn‐off” fluorometric response upon binding with Ag+ in DMSO: Water (pH = 7, 1:1, v/v) over other cations. The binding mode of probe MNTPZ to Ag+ was studied by Job's plot, 1H NMR studies, FT‐IR spectroscopy and DFT calculations. Moreover, the situ generated probe MNTPZ + Ag+ complex acted as an efficient fluorometric “turn‐on” probe for I? via Ag+ displacement approach. The detection limit of probe MNTPZ for Ag+ and the resultant complex probe MNTPZ + Ag+ for I? were determined to be 1.36 μmol/L and 1.03 μmol/L respectively. Notably, the developed probe was successfully used for quantitative determination of I? in real samples with satisfactory results.  相似文献   

19.
Naphthalimide‐based fluorescent probes 1 and 2 were synthesized, and were designed to form probe–Hg complexes through Hg2+ ions coordinated to the amide group and imidazole group. They showed high sensitivity and were selective ‘naked‐eye’ chemosensors for Hg2+ in phosphate buffer. The fluorescence of compounds 1 and 2 could be quenched up to 90% by the addition of Hg2+. Reversible probes can detect Hg2+ ions over a wide pH range (7.0–10.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
An aqueous fluorescent probe, 1, was developed for the rapid detection of Hg2+ with high sensitivity and excellent selectivity. Upon the addition of Hg2+ in pure aqueous media, the Hg2+‐mediated hydrolysis of vinyl ether and subsequent cyclization reactions converted probe 1 into the corresponding iminocoumarin dye, which is strongly fluorescent when excited. The application of this probe for the detection of intracellular Hg2+ was successfully demonstrated in living cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号