首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel heterodimeric β-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 UoNPG/mg protein. The Km, kcat and kcat/Km values for lactose and o-nitrophenyl-β-D-galactopyranoside (oNPG) were 38 mM, 20 s-1, 530 M-1·s-1 and 1.67 mM, 540 s-1, 325 000 M-1·s-1, respectively. The temperature optimum of β-galactosidase activity was 60–65°C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal β-galactosidases. Mg2+ ions enhanced both activity and stability significantly. L. pentosus β-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of β-(1→3) and β-(1→6) linkages, and the main transgalactosylation products identified were the disaccharides β-D-Galp-(1→6)-D -Glc, β-D-Galp-(1→3)-D -Glc, β-D -Galp-(1→6)-D -Gal, β-D -Galp-(1→3)-D -Gal, and the trisaccharides β-D -Galp-(1→3)-D -Lac, β-D -Galp-(1→6)-D -Lac.  相似文献   

2.
The cgt gene encoding α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01 was expressed in Escherichia coli as a C-terminal His-tagged protein. After 90 h of induction, the activity of α-CGTase in the culture medium reached 22.5 U/mL, which was approximately 42-fold higher than that from the parent strain. The recombinant α-CGTase was purified to homogeneity through either nickel affinity chromatography or a combination of ion-exchange and hydrophobic interaction chromatography. Then, the purified enzyme was characterized in detail with respect to its cyclization activity. It is a monomer in solution. Its optimum reaction temperature is 45 °C, and half-lives are approximately 8 h at 40 °C, 1.25 h at 45 °C and 0.5 h at 50 °C. The recombinant α-CGTase has an optimum pH of 5.5 with broad pH stability between pH 6 and 9.5. It is activated by Ca2+, Ba2+, and Zn2+ in a concentration-dependent manner, while it is dramatically inhibited by Hg2+. The kinetics of the α-CGTase-catalyzed cyclization reaction could be fairly well described by the Hill equation.  相似文献   

3.
Summary Six strains of Pediococcus pentosaceus and two of P. acidilactici had intracellular -galactosidase (-gal) activity when grown in the presence of lactose; all but two strains of P. pentosaceus and one of P. acidilactici had such activity when grown in the presence of glucose. Synthesis of -gal by P. pentosaceus ATCC 25745 was inducible with lactose, galactose, melibiose, lactobionic acid and possibly cellobiose but not with glucose, sucrose, maltose, glycerol, fructose or mannose. Lactose, galactose and possibly maltose, melibiose and lactobionic acid but not glucose, sucrose, glycerol, cellobiose, fructose or mannose induced -gal synthesis by P. acidilactici ATCC 25740. Synthesis of -gal was partially inhibited in P. pentosaceus ATCC 25745 and P. acidilactici ATCC 25740 by glucose added to the medium during growth in the presence of galactose or lactose. Isopropyl -d-thiogalactopyranoside failed to induce synthesis of -gal by either strain during growth on glucose. -Gal from P. pentosaceus ATCC 25745 had a molecular weight of 66,000 and activity optima of pH 6.5 and 45° C. Activity of the enzyme was stimulated by reducing agents, Mg2+, Mn2+, Zn2+ and Co2+ but not by Ca2+, and was markedly inhibited by ethylenediaminetetraacetate (EDTA), HgCl2, 1,10-phenanthroline, and an oxidizing agent. The K mvalues of the enzyme for o-nitrophenol--d-galactopyranoside and lactose were 3.07 and 7.0 mM, respectively, suggesting its low affinity for lactose. Offprint requests to: E. H. Marth  相似文献   

4.
5.
In this study, we purified an acidic β-galactosidase to homogeneity from Ginkgo biloba seeds (β-Gal’ase Gb-1) with approximately 270-fold purification. A molecular mass of the purified β-Gal’ase Gb-1 was estimated about 35 kDa by gel filtration and 32 kDa by SDS-PAGE under non-reducing condition, respectively. On the other hand, β-Gal’ase Gb-1 produced a single band with a molecular mass of 16 kDa by SDS-PAGE under reducing condition. The N-terminal amino acid sequences of 32 kDa and 16 kDa molecules were the same and identified as H-K-A-N-X-V-T-V-A-F-V-M-T-Q-H-, suggesting that β-Gal’ase Gb-1 may function as a homodimeric structure in vivo. When complex-type N-glycans containing β-galactosyl residues were used as substrates, β-Gal’ase Gb-1 showed substantial activity for β1-4 galactosyl residue and modest activity for β1-3 galactosyl residue with an optimum pH near 5.0. Based on these results, the involvement of β-Gal’ase Gb-1 in the degradation of plant complex-type N-glycans is discussed.  相似文献   

6.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

7.
Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOS?≥?DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics.  相似文献   

8.
Edward Leete 《Phytochemistry》1981,20(5):1037-1040
An aqueous solution of nicotine-[2′-14C] was painted on the leaves of 4-month-old tobacco plants (Nicotiana tabacum) which were harvested 3 weeks later. This tracer was similarly applied to excised tobacco leaves which were allowed to dry in air for 4 weeks. The alkaloids, were extracted with the addition of N′-isopropylnornicotine, a compound which has been previously isolated from air-cured tobacco. Radioactive nicotine and nornicotine were isolated from the intact plants with only minute activity in the N′-isopropylnornicotine. All three of these alkaloids were radioactive from the air-cured leaves, and degradation of the labelled N'-isopropylnornicotine indicated that all the activity was located at the C-2′ position. A higher level of activity was found in N′-isopropylnornicotine which was obtained from excised leaves which were fed the nicotine- [2′- 14C] in aqueous acetone, and were treated on subsequent days with aqueous acetone. These results are consistent with the hypothesis that N′-isopropylnornicotine is produced in the curing of tobacco leaves by reaction of nornicotine (formed by the demethylation of nicotine) with acetoacetate, followed by decarboxylation and reduction. The 13C NMR chemical shifts of the methyl groups of N′-isopropylnornicotine and related 1-isopropylpyrrolidines which have chirality at the α-position of the pyrrolidine ring, are significantly different (up to 7.5 ppm).  相似文献   

9.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

10.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

11.
β-Glucosidase plays an important role in the degradation of cellulose. In this study, a novel β-glucosidase ccbgl1b gene for a glycosyl hydrolase (GH) family 1 enzyme was cloned from the genome of Cellulosimicrobium cellulans and expressed in Escherichia coli BL21 cells. The sequence contained an open reading frame of 1494?bp, encoded a polypeptide of 497?amino acid residues. The recombinant protein CcBgl1B was purified by Ni sepharose fastflow affinity chromatography and had a molecular weight of 57?kDa, as judged by SDS-PAGE. The optimum β-glucosidase activity was observed at 55?°C and pH 6.0. Recombinant CcBgl1B was found to be most active against aryl-glycosides p-nitrophenyl-β-D-glucopyranoside (pNPβGlc), followed by p-nitrophenyl-β-D-galactopyranoside (pNPβGal). Using disaccharides as substrates, the enzyme efficiently cleaved β-linked glucosyl-disaccharides, including sophorose (β-1,2-), laminaribiose (β-1,3-) and cellobiose (β-1,4-). In addition, a range of cello-oligosaccharides including cellotriose, cellotetraose and cellopentaose were hydrolysed by CcBgl1B to produce glucose. The interaction mode between the enzyme and the substrates driving the reaction was modelled using a molecular docking approach. Understanding how the GH1 enzyme CcBgl1B from C. cellulans works, particularly its activity against cello-oligosaccharides, would be potentially useful for biotechnological applications of cellulose degradation.  相似文献   

12.
13.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

14.
The β-galactosidase from Talaromyces thermophilus CBS 236.58 immobilized onto Eupergit C produced galacto-oligosaccharides (GalOS) in batchwise and continuous packed-bed mode of operation. A maximum yield of GalOS of 12, 39 and 80 g l−1 was obtained for initial lactose concentrations of 50, 100 and 200 g l−1, respectively, for batch conversion experiments. The immobilized enzyme could be re-used for several cycles for lactose hydrolysis and transformation. The maximum GalOS concentration of approximately 50 g l−1 was obtained with the dilution rate of 0.375 h−1 in a packed-bed reactor, when using an initial lactose concentration of 200 g l−1. Continuous conversion of lactose in the packed-bed reactor resulted in the formation of relatively more trisaccharides than when employing the immobilized enzyme in discontinuous mode of operation.  相似文献   

15.
A detailed hydrodynamic study has been made on the γ-crystallin of the bovine lens. Sedimentation study indicates that γ-crystallin shows a nearly gaussian peak throughout the course of sedimentation at high speed, using a synthetic boundary cell. The diffusion and sedimentation coefficients are 10.3×10?7 cm2/sec and 2.51 S, respectively. The weight-average molecular weight of the unfractionated γ-crystallin calculated from sedimentation equilibrium is 21,800. The four major subfractions of γ-crystallin show similar hydrodynamic properties with an intrinsic viscosity of 2.50 ml/g and a Stokes radius of 21 Å. The distinct electrophoretic mobilities exhibited by the four subfractions show gel-concentration dependence and similar slopes in the Ferguson plot, indicative of being charge isomers of the same molecular species. Amino acid analysis of these four subfractions corroborated the conclusions that these γ-crystallin polypeptides are closely related and comprise a multigene family of crystallins. Based on the sedimentation and intrinsic viscosity data, γ-crystallin can be modeled as a prolate ellipsoid with an axial ratio of approximately 3.0 and a hydration factor of 0.27 g water per gram protein. The circular dichroism data for γ-crystallins showed a minimum at about 217 nm, characteristic of a β-sheet conformation. These structural characteristics are in good accord with those derived from X-ray diffraction data for γ-crystallin II.  相似文献   

16.
17.
Reiner Feick  Gerhart Drews 《BBA》1978,501(3):499-513
The isolation of two native light harvesting bacteriochlorophyl · protein complexes from Rhodopseudomonas capsulata is described. The light harvesting bacteriochlorophyll I (B 875) has been isolated from the blue-green mutant Ala+ lacking both carotenoids and light harvesting bacteriochlorophyll II. Light harvesting bacteriochlorophyll I is associated with a protein (light harvesting band 2) of 12 000 molecular weight.Light harvesting bacteriochlorophyll II complex has been isolated from the mutant Y5 lacking a reaction center and light harvesting bacteriochlorophyll I. Light harvesting bacteriochlorphyll II (B 800 + 850) together with carotenoids is associated with two polypeptides (light harvesting bands 3 and 4) having molecular weights of about 8000 and 10 000 (sodium dodecyl sulfate polyacrylamide gel electrophoresis). A third protein (light harvesting band 1) is in the purified light harvesting II fraction (mol. wt. approx. 14 000), but not associated with bacteriochlorophyll or carotenoids. The amino acid composition of the 3 antenna pigment II proteins is given. The polarity of these proteins was found to be 48%. From the amino acid composition the following molecular weights were calculated band 1: 17 350, band 3: 13 350 and band 4: 10 500.  相似文献   

18.
Penicillium funiculosum is an industrial fungus exploited for its capacity to secrete a wide array of glycosyl hydrolases (GHs) and glycosyl transferases (GTs). These enzymes are part of an enzymatic cocktail that is commercialized under the name RovabioExcel®, which is used as feed additive in animal nutrition. The genome sequence of this filamentous fungus has revealed a remarkable richness in several accessory enzymes, and notably in α-l-arabinofuranosidases (α-l-AFases) that participate in the hydrolysis of arabinoxylans (AX) in corn/wheat fibers used in poultry feed. Here, we report on the molecular and biochemical characterization of three GH62 family α-l-AFases encoding genes in this filamentous fungus. Amino acids sequences showed strong similarities (>65%) between them, as well with GH62 enzymes from other filamentous fungi. Interestingly, one of the three PfABF62, namely PfABF62c is unique in bearing at its N-terminus a canonical family 1 carbohydrate-binding module (CBM1) of 37 amino acids length, which was shown to help the protein to bind to microcrystalline cellulose. Also, this PfABF62c showed optimal pH and temperature of 2.8 and 50 °C, respectively, whereas optimal activity for PfABF62a and PfABF62b were measured at 40 °C and at pH ranging between 2.6 and 4.5. Arabinan and arabinoxylan, but no other sugars or polymers were found to augment the thermal transition of the three enzymes by 3–5 °C as measured by differential scanning fluorimetry. Finally, enzymatic hydrolysis fingerprints of heteroxylans allowed concluding that the mode of action of the GH62 enzymes from this fungal species was to remove arabinofuranosyl residues linked in position O-2 and O-3 of substituted xylose units in arabinoxylan chains.  相似文献   

19.
The thermo-tolerant yeast Pichia etchellsii produced two cell-wall-bound inducible β-glucosidases, BGLI (molecular mass 186 kDa) and BGLII (molecular mass 340 kDa), which were purified by a simple, three-step method, comprising ammonium sulfate precipitation, ion-exchange and hydroxyapatite chromatography. The two enzymes exhibited a similar pH and temperature optima, inhibitory effect by glucose and gluconolactone, and stability in the pH range of 3.0–9.0. Placed in family 3 of glycosylhydrolase families, BGLI was more active on salicin, p-nitrophenyl β-d-glucopyranoside and alkyl β-d-glucosides whereas BGLII was most active on cellobiose. kcat and KM values were determined for a number of substrates and, for BGLI, it was established that the deglycosylation step was equally effective on aryl- and alkyl-glucosides while the glycosylation step varied depending on the substrate used. This information was used to synthesize alkyl-glucosides (up to a chain length of C10) using dimethyl sulfoxide stabilized single-phase reaction microenvironment. About 12% molar yield of octyl-glucoside was calculated based on a simple spectrophotometric method developed for its estimation. Further, detailed comparison of properties of the enzymes indicated these to be different from the previously cloned β-glucosidases from this yeast.  相似文献   

20.
Aims: This study focused on the cloning, expression and characterization of recombinant α‐l ‐arabinosidases from Bifidobacterium longum H‐1. Methods and Results: α‐l ‐Arabinofuranosidase (AfuB‐H1) and bifunctional α‐l ‐arabinopyranosidase/β‐d ‐galactosidase (Apy‐H1) from B. longum H‐1 were identified by Southern blotting, and their recombinant enzymes were overexpressed in Escherichia coli BL21 (DE3). Recombinant AfuB‐H1 (rAfuB‐H1) was purified by single‐step Ni2+‐affinity column chromatography, whereas recombinant Apy‐H1 (rApy‐H1) was purified by serial Q‐HP and Ni2+‐affinity column chromatography. Enzymatic properties and substrate specificities of the two enzymes were assessed, and their kinetic constants were calculated. According to the results, rAfuB‐H1 hydrolysed p‐nitrophenyl‐α‐l ‐arabinofuranoside (pNP‐αL‐Af) and ginsenoside Rc, but did not hydrolyse p‐nitrophenyl‐α‐l ‐arabinopyranoside (pNP‐αL‐Ap). On the other hand, rApy‐H1 hydrolysed pNP‐αL‐Ap, p‐nitrophenyl‐β‐d ‐galactopyranoside (pNP‐βD‐Ga) and ginsenoside Rb2. Conclusions: Ginsenoside‐metabolizing bifidobacterial rAfuB‐H1 and rApy‐H1 were successfully cloned, expressed, and characterized. rAfuB‐H1 specifically recognized the α‐l ‐arabinofuranoside, whereas rApy‐H1 had dual functions, that is, it could hydrolyse both β‐d ‐galactopyranoside and α‐l ‐arabinopyranoside. Significance and Impact of the Study: These findings suggest that the biochemical properties and substrate specificities of these recombinant enzymes differ from those of previously identified α‐l ‐arabinosidases from Bifidobacterium breve K‐110 and Clostridium cellulovorans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号