首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have proposed a new mannan catabolic pathway in Bacteroides fragilis NCTC 9343 that involves a putative mannanase ManA in glycoside hydrolase family 26 (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772). If this hypothesis is correct, ManA has to generate mannobiose from mannans as the major end product. In this study, the BF0771 gene from the B. fragilis genome was cloned and expressed in Escherichia coli cells. The expressed protein was found to produce mannobiose exclusively from mannans and initially from manno-oligosaccharides. Production of 4-O-β-d-glucopyranosyl-d-mannose or 4-O-β-d-mannopyranosyl-d-glucose from mannans was not detectable. The results indicate that this enzyme is a novel mannobiose-forming exo-mannanase, consistent with the new microbial mannan catabolic pathway we proposed.  相似文献   

3.
O-Polysaccharides (O-antigens) were isolated from Escherichia coli O13, O129, and O135 and studied by chemical analyses along with 2D 1H and 13C NMR spectroscopy. They were found to possess a common →2)-l-Rha-(α1→2)-l-Rha-(α1→3)-l-Rha-(α1→3)-d-GlcNAc-(β1→ backbone, which is a characteristic structural motif of the O-polysaccharides of Shigella flexneri types 1-5. In both the bacterial species, the backbone is decorated with lateral glucose residues or/and O-acetyl groups. In E. coli O13, a new site of glycosylation on 3-substituted Rha was revealed and the following O-polysaccharide structure was established:The structure of the E. coli O129 antigen was found to be identical to the O-antigen structure of S. flexneri type 5a specified in this work and that of E. coli O135 to S. flexneri type 4b reported earlier.  相似文献   

4.
Helicobacter pylori (H. pylori) is the causative pathogen underlying gastric diseases such as chronic gastritis and gastric cancer. Previously, the authors revealed that α1,4-linked N-acetylglucosamine-capped O-glycan (αGlcNAc) found in gland mucin suppresses H. pylori growth and motility by inhibiting catalytic activity of cholesterol α-glucosyltransferase (CHLαGcT), the enzyme responsible for biosynthesis of the major cell wall component cholesteryl-α-d-glucopyranoside (CGL). Here, the authors developed a polyclonal antibody specific for CHLαGcT and then undertook quantitative ultrastructural analysis of the enzyme’s localization in H. pylori. They show that 66.3% of CHLαGcT is detected in the cytoplasm beneath the H. pylori inner membrane, whereas 24.7% is present on the inner membrane. In addition, 2.6%, 5.0%, and 1.4% of the protein were detected in the periplasm, on the outer membrane, and outside microbes, respectively. By using an in vitro CHLαGcT assay with fractionated H. pylori proteins, which were used as an enzyme source for CHLαGcT, the authors demonstrated that the membrane fraction formed CGL, whereas other fractions did not. These data combined together indicate that CHLαGcT is originally synthesized in the cytoplasm of H. pylori as an inactive form and then activated when it is associated with the cell membrane. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

5.
Lipoarabinomannan (LAM) is composed of a phosphatidylinositol anchor followed by a mannan followed by an arabinan that may be capped with various motifs including oligosaccharides of mannose. A related polymer, lipomannan (LM), is composed of only the phosphatidylinositol and mannan core. Both the structure and the biosynthesis of LAM have been studied extensively. However, fundamental questions about the branching structure of LM and the number of arabinan chains on the mannan backbone in LAM remain. LM and LAM molecules produced by three different glycosyltransferase mutants of Mycobacterium smegmatis were used here to investigate these questions. Using an MSMEG_4241 mutant that lacks the α-(1,6)-mannosyltransferase used late in LM elongation, we showed that the reducing end region of the mannan that is attached to inositol has 5–7 unbranched α-6-linked-mannosyl residues followed by two or three α-6-linked mannosyl residues branched with single α-mannopyranose residues at O-2. After these branched mannosyl residues, the α-6-linked mannan chain is terminated with an α-mannopyranose at O-2 rather than O-6 of the penultimate residue. Analysis of the number of arabinans attached to the mannan core of LM in two other mutants (ΔembC and ΔMSMEG_4247) demonstrated exactly one arabinosyl substitution of the mannan core suggestive of the arabinosylation of a linear LM precursor with ∼10–12 mannosyl residues followed by additional mannosylation of the core and arabinosylation of a single arabinosyl “primer.” Thus, these studies suggest that only a single arabinan chain attached near the middle of the mannan core is present in mature LAM and allow for an updated working model of the biosynthetic pathway of LAM and LM.  相似文献   

6.

Background

Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that is recognized as a major cause of chronic gastritis, peptic ulcers, and gastric cancer. Comparable to other Gram-negative bacteria, lipopolysaccharides (LPS) are an important cellular component of the outer membrane of H. pylori. The LPS of this organism plays a key role in its colonization and persistence in the stomach. In addition, H. pylori LPS modulates pathogen-induced host inflammatory responses resulting in chronic inflammation within the gastrointestinal tract. Very little is known about the comparative LPS compositions of different strains of H. pylori with varied degree of virulence in human. Therefore, LPS was analyzed from two strains of H. pylori with differing potency in inducing inflammatory responses (SS1 and G27). LPS were extracted from aqueous and phenol layer of hot-phenol water extraction method and subjected for composition analysis by gas chromatography – mass spectrometry (GC-MS) to sugar and fatty acid compositions.

Results

The major difference between the two strains of H. pylori is the presence of Rhamnose, Fucose and GalNAc in the SS1 strain, which was either not found or with low abundance in the G27 strain. On the other hand, high amount of Mannose was present in G27 in comparison to SS1. Fatty acid composition of lipid-A portion also showed considerable amount of differences between the two strains, phenol layer of SS1 had enhanced amount of 3 hydroxy decanoic acid (3-OH-C10:0) and 3-hydroxy dodecanoic acid (3-OH-C12:0) which were not present in G27, whereas myristic acid (C14:0) was present in G27 in relatively high amount.

Conclusion

The composition analysis of H. pylori LPS, revealed differences in sugars and fatty acids composition between a mouse adapted strain SS1 and G27. This knowledge provides a novel way to dissect out their importance in host-pathogen interaction in further studies.
  相似文献   

7.
Cells of Saccharomyces rouxii (a salt-tolerant yeast) were grown in the presence of two levels of NaCl, 0 and 15%. Mannans obtained from both the cell walls and culture filtrates (extracellular) were examined. Yields based on the dry weight of cells demonstrated that the levels of both cell wall and extracellular mannans were lower when cells were grown in the presence of 15% NaCl. However, the carbohydrate and protein contents of the mannan preparations were not altered. The cell wall mannans obtained from the two growth conditions had similar molecular weights, whereas the extracellular mannans had different molecular weight distributions. Structural analyses showed that the cell wall and extracellular mannans had similar structures. Both had an α1-6-linked backbone to which single mannose and mannobiose units were connected as side chains, predominantly by α1-2 linkages. The mannans also contained mannosyloligosaccharides, mannotriose, mannobiose, and mannose attached to protein through an O-glycosidic bond. The molecular structure of the cell wall mannans remained unchanged at both levels of NaCl. However, in the presence of 15% NaCl, the side chains consisting of a mannobiose unit were slightly reduced.  相似文献   

8.
9.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

10.
The O-polysaccharide of Mesorhizobium loti HAMBI 1148 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation, and 1H and 13C NMR spectroscopies, including 2D 1H/1H COSY, TOCSY, ROESY, and H-detected 1H/13C HSQC experiments. The O-polysaccharide was found to have a branched hexasaccharide-repeating unit of the following structure:where 2-acetamido-2-deoxy-4-O-methyl-d-glucose (d-GlcNAc4Me) and methyl group on 2-substituted d-rhamnose (Me) shown in italics are present in ∼80% and ∼40% repeating units, respectively. Similar studies of the O-polysaccharide from Mesorhizobium amorphae ATCC 19655 by sugar analysis and NMR spectroscopy revealed essentially the same structure but a higher content of 3-O-methyl-d-rhamnose (∼70%).  相似文献   

11.
Polysaccharides containing -1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little is known about their presence and tissue localisation in the model angiosperm, Arabidopsis thaliana (L.) Heynh. In this study, antibodies that specifically recognised mannans in competitive ELISA experiments were raised in rabbits. Using these antibodies, we showed that Golgi-rich vesicles derived from Arabidopsis callus were able to synthesise mannan polysaccharides in vitro. Immunofluorescence light microscopy and immunogold electron microscopy of Arabidopsis inflorescence stem sections revealed that the mannan polysaccharide epitopes were localised in the thickened secondary cell walls of xylem elements, xylem parenchyma and interfascicular fibres. Similarly, mannan epitopes were present in the xylem of the leaf vascular bundles. Surprisingly, the thickened epidermal cell walls of both leaves and stems also contained abundant mannan epitopes. Low levels were observed in most other cell types examined. Thus, mannans are widespread in Arabidopsis tissues, and may be of particular significance in both lignified and non-lignified thickened cell walls. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) of cell wall preparations digested with a specific mannanase showed that there is glucomannan in inflorescence stems. The findings show that Arabidopsis can be used as a model plant in studies of the synthesis and functions of mannans.Abbreviations BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - PACE polysaccharide analysis by carbohydrate gel electrophoresis  相似文献   

12.
Plesiomonas shigelloides O17 LPS contains the same O-antigenic polysaccharide chain as a causative agent of dysentery, Shigella sonnei. This polysaccharide can be used as a component of a vaccine against dysentery. Core part of the P. shigelloides O17 LPS was studied using NMR and mass spectrometry and the following structure was proposed: Significant similarity of the P. shigelloides O17 LPS core with the structure of the P. shigelloides O54 core was observed.  相似文献   

13.
Methylation-fragmentation analyses were conducted on a series of extracellular, yeast α-D-linked mannans representing six different structural types. D-Mannans of low degree of branching were produced by Hansenula capsulata strains and by species related to H. holstii. The former consisted primarily of (1→2)- and (1→6)-linked D-mannosyl residues; the latter, of (1→2)-and (1→3)-linked D-mannosyl residues. Although the remaining structural types were highly branched, each gave distinct methylation-patterns indicative of (1→6)-linked backbones to which are appended non-(1→6)-linked side-chains. Acetolysis studies were correlated with the methylation analyses, and the correlation demonstrated that each branched polymer possesses side chains of heterogeneous length.  相似文献   

14.
The mannans from Saccharomyces cerevisiae mutant strains X2180-1A-5 and 4484-24D-1, both of which were shown to contain small amounts of phosphate (less than 0.2%), were fractionated on a column of diethylaminoethyl-Sephadex into five subfractions designated as fractions I to V. These subfractions contain different amounts of phosphate, ranging from 0.03 to 0.09 (strain X2180-1A-5) and from 0.01 to 0.17% (strain 4484-24D-1). Fractions I to IV from strain X2180-1A-5 showed nearly identical precipitin activities against the homologous anti-whole cell serum, whereas fraction V, containing the largest amount of phosphate and protein among this mannan subfraction series, showed unexpectedly weaker precipitin activity than those of the other fractions. A synthetic mannan consisting or consecutive alpha-1 leads to 6-linked D-mannopyranosyl residues was found to be cross-reactive with all the mannan subfractions of strain X2180-1A-5 against anti-X2180-1A-5 serum. On the other hand, antibody-precipitating activities of the mannan subfractions of the latter strain were proportional to their phosphate content, although the increments of precipitated antibody nitrogen among the subfractions were quite small. However, fraction V of this mannan subfraction series, containing the largest amounts of phosphate and protein, showed lower precipitin activity than did the other four fractions. These findings indicate that mannans containing no phosphate or relatively small amounts of phosphate, such as those investigated in the present study, are less heterogeneous in the densities of the branching moieties than are highly phosphorylated mannans. These findings suggest that the transfer step of mannosyl-1-phosphate into the precursor(s) of the wild-type strain mannans during the biosynthetic process corresponds to the key reaction responsible for the anionic heterogeneity due to the density heterogeneity of the antigenic determinants.  相似文献   

15.
Sun YC  Wen JL  Xu F  Sun RC 《Bioresource technology》2011,102(10):5947-5951
Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-d-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1 → 4)-linked d-xylopyranosyl residues, having ramifications of α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400 °C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.  相似文献   

16.
Cell walls of the Basidiomycete fungus Polyporus tumulosus (Cooke) were fractionated, and the polysaccharide content of the fractions investigated. The major constituents of the cell wall include four polysaccharides, chitin, a β-1, 3-glucan and the alkali soluble α-glucan and xylomannan.The glucan is highly dextrotatory with an [α]D21 of + 221° and gave on partial acid hydrolysis and acetolysis an homologous series of oligosaccharides. The disaccharide was shown to be nigerose 3-0-α-D-glucopyranosyl-D-glucose. Periodate oxidation and methylation studies provided supporting evidence that the polysaccharide is an essentially unbranched polymer of 1,3-linked glucose residues.The other alkali-soluble polysaccharide, a xylomannan, is a polymer of mannose and xylose in the approximate molar proportions of 1.2:1. It has an [α]D = + 56° and on partial acid hydrolysis and acetolysis gave an homologous series of 1,3-linked mannodextrins but no oligosaccharides containing xylose were obtained. An α-1,3-linked mannan was prepared from the xylomannan by degradation with mild acid or by degradation of the periodate-oxidased and reduced xylomannan. The structure therefore is visualised as having a backbone of 1,3-linked mannan, to which xylose residues are attached. Methylation studies showed that branching occurs at C-4 of the mannopyranose units; the presence of 2,3-di-o-methyl-d-xylose in the hydrolysate of the methylated polysaccharide indicated that some of the xylose residues are 1,4-linked. The possible structure of the fungal cell wall is discussed in the light of the results obtained.  相似文献   

17.
Natural compounds offer interesting pharmacological perspectives for antiviral drug development with regard to broad-spectrum antiviral properties and novel modes of action. In this study, we have analyzed polysaccharide fractions isolated from Grateloupia indica. The crude water extract (GiWE) as well as one fraction (F3) obtained by anion exchange chromatography had potent anti-HSV activity. Their inhibitory concentration 50% (IC50) values (0.12-1.06 μg/ml) were much lower than cytotoxic concentration 50% values (>850 μg/ml). These fractions, which were effective antiviral inhibitors if added only during the adsorption period, had very low anticoagulant activity. Furthermore, they had no direct inactivating effect on virions in a virucidal assay. Chemical, chromatographic and spectroscopic methods showed that the active polysaccharide, which has an apparent molecular mass of 60 kDa and negative specific rotation −16° (c 0.2, H2O), contains α-(1 → 4)- and α-(1 → 3)-linked galactopyranose residues. Sulfate groups, if present, are located mostly at C-2/6 of (1 → 4)- and C-4/6 of (1 → 3)-linked galactopyranosyl units, and are essential for the anti herpetic activity of this polymer.  相似文献   

18.
The mannans of Candida albicans NIH A-207 (A strain, serotype A), C. albicans NIH B-792 (B strain, serotype B), and C. albicans J-1012 (J strain, serotype C) prepared by fractional precipitation with cetyltrimethylammonium bromide (Cetavlon) were investigated for their immunochemical properties. Upon treatment with 10 mM HCl at 100 degrees C for 60 min, the mannans of A and B strains each released a mixture of manno-oligosaccharides ranging from hexaose to mannose together with (for each one) an acid-modified mannan, while J-strain mannan released lower oligosaccharides, tetraose to mannose. The acid-modified mannan of B strain did not show antibody-precipitating activity against homologous antiserum, whereas acid-modified A- and J-strain mannans retained most of this activity. The acid-released oligosaccharides were assumed to consist of beta-1,2-linked D-mannopyranosyl residues from the results of specific rotation and proton magnetic resonance studies.  相似文献   

19.
The structure of O-linked acidic oligosaccharide from Saccharomyces cerevisiae was analyzed. The chitinase, exclusively O-glycosylated extracelluar protein, was purified from strains mnn1, mnn1 mnn4, mnn1 mnn6 and Δkre2 and the oligosaccharides were hydrolyzed by O-linked sugar chain specific hydrazinolysis. The mannosylphosphorylated mannotriose (M3-P-M) was detected in strain mnn1, but not in the other three strains (mnn1 mnn4, mnn1 mnn6 and Δkre2). α-Mannosidase treatment and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of mannosylphosphorylated mannotriose revealed that mannosylphosphate was attached to a middle mannose of α-1,2-linked mannotriose. This result indicates that the mnn4 and mnn6 mutations affect the mannosylphosphorylation of O-linked oligosaccharide, together with that of N-linked oligosaccharide. The amount of mannosylphosphorylated mannotriose was 7% of total O-linked oligosaccharides (20% of neutral mannotriose) of chitinase in strain mnn1.  相似文献   

20.
A water soluble polysaccharide (RAP) was isolated and purified from Radix Astragali and its structure was elucidated by monosaccharide composition, partial acid hydrolysis and methylation analysis, and further supported by FT-IR, GC-MS and 1H and 13C NMR spectra, SEM and AFM microscopy. Its average molecular weight was 1334 kDa. It was composed of Rha, Ara, Glc, Gal and GalA in a molar ratio of 0.03:1.00:0.27:0.36:0.30. The backbone consisted of 1,2,4-linked Rhap, α-1,4-linked Glcp, α-1,4-linked GalAp6Me, β-1,3,6-linked Galp, with branched at O-4 of the 1,2,4-linked Rhap and O-3 or O-4 of β-1,3,6-linked Galp. The side chains mainly consisted of α-T-Araf and α-1,5-linked Araf with O-3 as branching points, having trace Glc and Gal. The terminal residues were T-linked Araf, T-linked Glcp and T-linked Galp. Morphology analysis showed that RAP took random coil feature. RAP exhibited significant immunomodulating effects by stimulating the proliferation of human peripheral blood mononuclear cells and enhancing its interleukin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号