首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a new integrative vector (pBCGA) was developed and used for the high-level expression of an optimized ι-carrageenase gene (CGIOP) in Brevibacillus choshinensis. The pBCGA vector allowed multiple copies of the gene CGIOP to be stably integrated into the genomic DNA of B. choshinensis. The recombinant strain I24 could produce an extracellular ι-carrageenase activity of 38.9 U/mL within 72 h, which remained stable after five sequential inoculations and cultivations under the antibiotic-free culture conditions. Furthermore, the strain I24 was applied to 10-L fermentation under the antibiotic-free culture condition, resulting in the highest observed ι-carrageenase activity of 182.4 U/mL within 24 h. Subsequently, recombinant ι-carrageenase (rCgiA) was purified and characterized, exhibiting an optimal pH and temperature of 8.0 and 45 °C, respectively. Notably, rCgiA showed considerable stability below 45 °C and over a relatively broad pH range of 6.0–11.0. In addtion, the activity of rCgiA was significantly stimulated by NaCl, Mg2+, and Ca2+. HILIC LC-LTQ-Orbitrap-FTMS analysis revealed that rCgiA hydrolyzed ι-carrageenan via a processive mechanism with the major product of ι-carrageenan tetrasaccharide. Thus, the strain B. choshinensis I24 had broad potential for use in the environment-friendly and large-scale production of ι-carrageenase and ι-carrageenan oligosaccharides.  相似文献   

2.
In a suspension culture of Humulus lupulus hop α-acids could not be detected. However, the culture was shown to have an in vivo ability to degrade exogenous α-acids and related compounds. It is shown that this is due to peroxidase with a rate constant for α-acid degradation of 2.7 × 104/M · sec.  相似文献   

3.
A crude enzyme preparation from Penicillium multicolor efficiently produced mainly gentiotriose to gentiopentaose (d.p. 3-5) by transglycosylation using a high concentration of gentiobiose as the substrate. The resulting gentiotriose was examined in a gustatory sensation test using human volunteers, and was determined to have one-fifth of the bitterness of gentiobiose. The crude enzyme preparation was analyzed by chromatography to determine the enzyme responsible for formation of the gentiooligosaccharides. The transglycosylation was shown to take place in two stages by a combination of β-glucosidase and β-(1→6)-glucanase. In the initial stage, which was the rate-limiting step in the overall process, β-glucosidase produced mainly gentiotriose from gentiobiose. In the second step, β-(1→6)-glucanase acted on the resulting gentiotriose, which served as both donor and acceptor, to produce a series of gentiooligosaccharides (d.p. 4-9) by transglycosylation.  相似文献   

4.
Bioremediation of anthropogenic organic pollutants in cold climates is often limited by lower microbial or enzyme activity induced by low temperature. The present study addressed this issue through the degradation of ??-hexachlorocyclohexane (??-HCH) by three Sphingobium strains (S. indicum B90A, S. japonicum UT26 and S. francense Sp+) under low temperature (4 °C). After 5 days incubation at 4 °C, 79.7% and 43.8% of 5 and 25 mg L−1 of ??-HCH added were degraded, respectively by the inoculation of 1.75 × 107 cells mL−1 of S. indicum B90A. An increase in inoculum concentration to 1.72 × 108 cells mL−1 significantly increased the degradation to 98.1 ± 1.7% of 5 mg L−1 within 24 h. Further, S. indicum B90A and S. japonicum UT26 can rapidly degrade ??-HCH at 4 °C, while the degradation capability of S. francense Sp+ is relatively low. At 4 °C, ??-HCH is transformed to extremely low amounts of 1,2,4-trichlorobenzene (1,2,4-TCB) and 2,5-dichlorophenol (2,5-DCP) by S. indicum B90A, but most of ??-HCH were transformed to 2,5-Dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL) by S. japonicum UT26. These results revealed that haloalkane dehalogenases in some Sphingobium species are very active at temperature as low as 4 °C and S. indicum B90A might be a good candidate for developing novel bioremediation techniques for cold regions to decontaminate ??-HCH from soils/waters.  相似文献   

5.
Depolymerization of -carrageenan was performed using carrageenase isolated from the cell-free medium of a culture of marine Cytophaga sp. MCA-2. The low-molecular-weight carrageenans after ultrafiltration and lyophilization were sulfonated with formamide-chlorosulfonic acid. The anti-tumor activity of the products with different molecular weight was determined by using Sarcoma 180 tumor in mouse. A carrageenan oligosaccharide with a molecular weight of 1726, administered orally at a dose of 100 mg kg–1 mouse markedly inhibited tumor formation. However, the anti-tumor activity of high-sulfonated carrageenan was much less than that of the non-sulfonated or light-sulfonated preparation. The activities of the latter products on superoxide dismutase and catalase were enhanced considerably, which suggests that carrageenan oligosaccharide was effective in promoting the antioxidation ability and eliminating danger from free radicals. The preparations showed special effects on immunological regulation, especially the phagocytosis ratio and phagocytosis index of macrophage, which might be beneficial for the anti-tumor activity. Although no anti-tumor activity of this product was detected in vitro, suggesting that its activity differs between in vitro and in vivo, this 1726 molecular weight product provides a potent clinical use in tumor treatment.  相似文献   

6.
7.
Timosaponin BII (BII), a steroidal saponin showing potential anti-dementia activity, was converted into its glucosylation derivatives by Toruzyme 3.0L. Nine products with different degrees of glucosylation were purified and their structures were elucidated on the basis of 13C NMR, HR-ESI-MS, and FAB-MS spectra data. The active enzyme in Toruzyme 3.0L was purified to electrophoretic homogeneity by tracking BII-glycosylase activity and was identified as Cyclodextrin-glycosyltransferase (CGTase, EC 2.4.1.19) by ESI-Q-TOF MS/MS. In this work, we found that the active enzyme catalyzed the synthesis of alpha-(1→4)-linked glucosyl-BII when dextrin instead of an expensive activated sugar was used as the donor and showed a high thermal tolerance with the most favorable enzymatic activity at 100 °C. In addition, we also found that the α-amylases and CGTase, that is, GH13 family enzymes, all exhibited similar activities, which were able to catalyze glucosylation in steroidal saponins. But other kinds of amylases, such as γ-amylase (GH15 family), had no such activity under the same reaction conditions.  相似文献   

8.

Purpose of work

The purpose of this study is to report a ι-carrageenase which degrades ι-carrageenan yielding neo-ι-carratetraose as the main product in the absence of NaCl. The gene for a new ι-carrageenase, CgiB_Ce, from Cellulophaga sp. QY3 was cloned and sequenced. It comprised an ORF of 1,386 bp encoding for a protein of 461 amino acid residues. From its sequence analysis, CgiB_Ce is a new member of GH family 82 and shared the highest identity of 32 % in amino acids with ι-carrageenase CgiA2 from Zobellia galactanovorans indicating that it is a hitherto uncharacterized protein. The recombinant CgiB_Ce had maximum specific activity (1,870 U/mg) at 45 °C and pH 6.5. It was stable between pH 6.0–9.6 and below 40 °C. Although its activity was enhanced by NaCl, the enzyme was active in the absence of NaCl. CgiB_Ce is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product (more than 80 % of the total product).  相似文献   

9.
The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe.  相似文献   

10.
l-DOPA α-glycosides were synthesized by reaction of l-DOPA with sucrose, catalyzed by four different glucansucrases from Leuconostoc mesenteroides B-512FMC, B-742CB, B-1299A, and B-1355C. The glucansucrases catalyzed the transfer of d-glucose from sucrose to the phenolic hydroxyl position-3 and -4 of l-DOPA. The glycosides were fractionated and purified by Bio-Gel P-2 column chromatography, and the structures were determined by 1H NMR spectroscopy. The major glycoside was 4-O-α-d-glucopyranosyl l-DOPA, and the minor glycoside was 3-O-α-d-glucopyranosyl l-DOPA. The two glycosides were formed by all four of the glucansucrases. The ratio of the 4-O-α-glycoside to the 3-O-α-glycoside produced by the B-512FMC dextransucrase was higher than that for the other three glucansucrases. The glycosylation of l-DOPA significantly reduced the oxidation of the phenolic hydroxyl groups, which prevents their methylation, potentially increasing the use of l-DOPA in the treatment of Parkinson’s disease. The use of one enzyme, glucansucrase, and sucrose as the d-glucosyl donor makes the synthesis considerably simpler and cheaper than the formerly published procedure using cyclomaltodextrin and cyclomaltodextrin glucanyltransferase, followed by glucoamylase, and β-amylase hydrolysis.  相似文献   

11.
Pectic substances from cherry fruits (Prunus avium) were studied after extraction and purification. They were subjected to β-elimination by heat treatment and depolymerized by endopolygalacturonase from Aspergillus niger. The degraded pectins were fractionated by gel permeation chromatography (Sephadex G-100, Bio-gel P2). The results suggest that the pectic substances largely consist of an α-d-galacturonic backbone interspersed with occasional l-rhamnosyl residues. Neutral sugars as side-chains of varying lengths appear to be concentrated along certain regions of the polymer (‘hairy)? in contrast to side-chain free (4mooth’) parts.  相似文献   

12.
We have studied the in vitro repression of RNA synthesis by the cI protein of phage λ. We find that highly purified cI protein is an effective and specific repressor of RNA synthesis from the early gene region of λ DNA. Under optimal conditions at least 95% of the early gene RNA synthesis is repressed and this repression is eliminated or severely impaired by the use of λ DNA-carrying operator-type mutations which reduce the binding affinity of the cI protein. Highly effective repression can be demonstrated only through the use of the initiation-inhibitor rifampicin, which presumably, selects “properly” initiated RNA chains; thus we can by-pass in vitro but not yet solve the problem of how the host polymerase initiates specifically in vivo from the immediate-early promoter sites.  相似文献   

13.
14.
Fusarium oxysporum f. sp. lycopersici detoxifies α-tomatine by producing an inducible extra-cellular enzyme which cleaves the glycoalkaloid into the tetrasaccharide lycotetraose and tomatidine.  相似文献   

15.
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUβ, but not the related protein HUα. Here we show that the Lon protease binds to both HUβ and HUα, but selectively degrades only HUβ in the presence of ATP. Mass spectrometry of HUβ peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUβ-A20Q and HUβ-A20D more slowly than HUβ. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUα, HUβ, and HUβ-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUβ, HUα, or HUβ-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUβ.  相似文献   

16.
The effects of cigarette smoke in promoting the degradation of (all-E)-β-carotene have been studied, but some conflicting results promoted a further study. β-Carotene was solubilized in hexane and challenged with filtered cigarette smoke both at room temperature and at ?20°C. The products arising from smoke-induced oxidation were assessed using a combination of HLPC-DAD, LC-MS and GC-MS. At room temperature the degradation of β-carotene was very rapid, with only a few products being detected using HPLC-DAD. A range of volatile products including β-ionone, β-cyclocitral and 5,6-epoxy-β-ionone were detected using GC-MS. In contrast, when the reaction was slowed (by reducing the reaction temperature), a much wider range of products could be detected by HPLC-DAD, including 4-nitro-β-carotene and several of its geometric isomers. These degradation products suggest that the C4 position on the β-carotene end-group plays a key role in initiating free radical attack.  相似文献   

17.
Pyruvate is formed on incubation of l-cysteine with acetone powder preparations of Acacia georginae but in the presence of cyanide, β-cyanoalanine is produced and pyruvate production is highly depressed. The pH optimum for pyruvate production is 8·5. In the presence of fluoride (1·5 mM), the pH profile is unchanged and in the presence of cyanide (1·5 mM), minimal pyruvate production occurs at pH 8·5. Although addition of pyridoxal phosphate had no influence on pyruvate or β-Cyanoalanine production, these processes were prevented by sodium borohydride, an inhibitor of pyridoxal enzymes. Neither l-serine nor O-acetyl-l-serine serve as alternative substrates for pyruvate production. β-Fluoroalanine was not detected on incubating fluoride with an enzyme preparation from A. georginae acetone powders.  相似文献   

18.
The objective of this work is to investigate the water and aroma barrier properties of films obtained from ι-carrageenan containing glycerol and lipids mixtures of oleic acid (OA) and beeswax (BW) used for encapsulation of active compounds. Water vapor permeability (WVP) is greatly influenced by lipid composition, encapsulated aroma compound and also relative humidity. WVP decreases when films contain encapsulated aroma compound but increases when the moisture content in the films increases. When oleic acid was the main compound of lipid phase, the plasticizing effect of water revealed through water permeability is less marked. The results of ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol and cis-3-hexenol permeabilities reveal that physicochemical interactions between aroma compounds-hydrocolloid and aroma compound-lipid induce structural changes and modify their permeability. This work gives evidence of the ability of ι-carrageenan–OA–BW films to protect encapsulated aroma compound and its influence in barrier properties.  相似文献   

19.
The 3.5 S fragments produced from normal human 7 S γ-globulin by the action of trypsin were isolated by DEAE-cellulose chromatography and gel filtration through Sephadex G-75 and were subsequently characterized by ultracentrifugation, immunoelectrophoresis, and double gel diffusion analysis. The degradation of the γ-globulin by trypsin resulted in the production of fragments which closely resembled those produced by cysteine-activated papain. Corresponding fragments split from the same γ-globulin by the two enzymes were indistinguishable by the methods employed with respect to antigenic determinants, sedimentation characteristics, and chromatographic behavior on DEAE-cellulose. Corresponding fragments also appeared identical by immunoelectrophoresis, except for a minor difference in the electrophoretic mobility of one of the fragment types. Two major subfractions of the γ-globulin obtained by DEAE-cellulose chromatography were each similar to the unfractionated γ-globulin with respect to the products obtained by enzymic degradation.  相似文献   

20.
Organic solvent-resistant Aspergillus niger α-glucosidase (ANGase) can synthesize α-2-deoxyglucosyl derivatives (2DDs) in water-organic solvent media by a trans-addition reaction from d-glucal to various acceptors. Herein, we studied the influence of four different solvents on ANGase stability and activity. ANGase exhibited 47 or 43% residual activity following incubation in 50% (v/v) or in 70% (v/v) acetone for 4 h, respectively. When various carbohydrates were used as acceptor molecules, ANGase catalyzed the addition reaction of four different sugar alcohols, glucose, sucrose, or trehalose to d-glucal. Among the acceptor molecules tested, xylitol was the best acceptor by producing the highest yield (87% addition). The concentration of acetone/acceptor influenced the formation of 2DDs and the yields. We confirmed the molecular weight of five kinds of products by mass spectrometry and enzymatic hydrolysis. Current method is useful for the production of carbohydrates containing 2-deoxyglucose moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号