首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile synthetic procedure has been used to prepare one five-coordinate and four six-coordinate copper(II) complexes of 4′-chloro-2,2′:6′,2″-terpyridine (tpyCl) ligand with different counterions (, , , , and ) in high yields. They are formulated as [Cu(tpyCl-κ3N,N,N′′)(SO4-κO)(H2O-κO)] · 2H2O (1), trans-[Cu(tpyCl-κ3N,N,N″)(NO3-κO)2(H2O-κO)] (2), [Cu(tpyCl-κ3N,N,N″)2](BF4)2 (3), [Cu(tpyCl-κ3N,N,N″)2](PF6)2 (4) and [Cu(tpyCl-κ3N,N,N″)2](ClO4)2 (5) and versatile interactions in supramolecular level including coordinative bonding, O-H?O, O-H?Cl, C-H?F, and C-H?Cl hydrogen bonding, π-π stacking play essential roles in forming different frameworks of 1-5. It is concluded that the difference of coordination abilities of the counterions used and the experimental conditions codominate the resulting complexes with 1:1 or 1:2 ratio of metal and ligand.  相似文献   

2.
By the reactions of Cu(AcO)2·H2O and Cu(HCOO)2·4H2O with 4,4′-dimethyl-2,2′-bipyridine and 5,5′-dimethyl-2,2′-bipyridine the compounds [Cu(AcO)2(4,4′-Me2-2,2′-bipy)]·1/2H2O (1), [Cu(AcO)2(5,5′-Me2-2,2′-bipy)(H2O)] (2), [Cu(HCOO)(μ-HCOO)(4,4′-Me2-2,2′-bipy)]n·nH2O (3) and [Cu(HCOO)(μ-HCOO)(5,5′-Me2-2,2′-bipy)]n·2nH2O (4) were obtained. In the acetate complexes, 1 and 2, the geometry around copper is distorted octahedral and square pyramidal, respectively. Dimeric units of different geometry are formed in both cases through hydrogen bonds in which non-coordinated (in 1) and coordinated (in 2) water molecules are involved. The structures of 3 and 4 consist of polymeric monodimensional chains of square pyramidal copper units linked by axial-equatorial syn-anti (3) or anti-anti (4) bridging formate groups. Water molecules form hydrogen bonds with formate groups of the same chain in compound 3. In compound 4 the water molecules link the polymeric contiguous chains of complex through hydrogen bonds with oxygen atoms of formate groups and they are also linked between them, forming monodimensional water chains which run parallel to the complex chains. Sheets parallel to the ac plane are formed by alternating chains of water and polymeric complex. Magnetic properties and EPR spectra for these compounds have been studied.  相似文献   

3.
A number of 5′-O-fatty acyl derivatives of 2′,3′-didehydro-2′,3′-dideoxythymidine (stavudine, d4T) were synthesized and evaluated for anti-HIV activities against cell-free and cell-associated virus, cellular cytotoxicity, and cellular uptake studies. The conjugates were found to be more potent than d4T. Among these conjugates, 5′-O-12-azidododecanoyl derivative of d4T (2), displaying EC50 = 3.1-22.4 μM, showed 4- to 9-fold higher activities than d4T against cell-free and cell-associated virus. Cellular uptake studies were conducted on CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of d4T attached through β-alanine (9) or 12-aminododecanoic acid (10) as linkers. The fluorescein-substituted analog of d4T with long chain length (10) showed 12- to 15-fold higher cellular uptake profile than the corresponding analog with short chain length (9). These studies reveal that conjugation of fatty acids to d4T enhances the cellular uptake and anti-HIV activity of stavudine.  相似文献   

4.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

5.
Reaction of ctc-OsBr2(RaaiR)2 [RaaiR=1-alkyl-2-(arylazo)imidazole, p-R-C6H4-NN-C3H2-NN-1-R, where R=H (a), Me (b), Cl (c) and R=Me (2), Et (3) and CH2Ph (4)] with 2,2-bipyridine (bpy) in presence of AgNO3 in EtOH followed by the addition of NH4PF6 afforded a mixed ligand complex [Os(bpy)(RaaiR)2](PF6)2. The structure of the complex, in one case [Os(bpy)(MeaaiMe)2](PF6)2 · 4H2O, has been confirmed by X-ray crystallography. The complexes are diamagnetic (low spin d6, s=0) and they show intense MLCT transition in the visible region (480-525 nm) and a weak transition at longer wavelength (>850 nm) in CH3CN solution. Cyclic voltammetry of the complexes show two metal oxidation, Os(II)/Os(III) at 0.72-0.76 V and Os(III)/Os(IV) at 1.34-1.42 V and three successive ligand reductions.  相似文献   

6.
The syntheses and electrochemical properties of novel ruthenium(II) polypyridyl complexes with 4,4-bipyrimidine, [Ru(trpy)(bpm)Cl](X) ([1](X; X=PF6, BF4)) and with a quaternized 4,4-bipyrimidinium ligand, [Ru(trpy)(Me2bpm)Cl](BF4)3 ([2](BF4)3) (trpy=2,2:6,2″-terpyridine, bpm=4,4-bipyrimidine, Me2bpm=1,1-dimethyl-4,4-bipyrimidinium) are presented. The bpm complex [1]+ was prepared by the reaction of Ru(trpy)Cl3 with 4,4-bipyrimidine in EtOH/H2O. The structural characterization of [1]+ revealed, that the bpm ligand coordinated to the ruthenium atom with the bidentate fashion. Diquaternization of the non-coordinating nitrogen atoms on bpm of [1]+ by (CH3)3OBF4 in CH3CN gave [2](BF4)3. The electrochemical and spectroelectrochemical properties of the complexes are described.  相似文献   

7.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

8.
A new set of supramolecular complexes, [Ni(DPAP-SHZ)(2,2′-bipy)CH3OH] (1), [Zn(DPAP-SHZ)(2,2′-bipy)CH3OH] (2) and [Cu(DPAP-SHZ)(2,2′-bipy)] · 2CH2Cl2 (3) (DPAP-SHZ = 1,3-diphenyl-4-(salicylidene hydrazide)-acetyl-pyrazolone-5, 2,2′-bipy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, TG-DTA, IR spectroscopy and X-ray crystallography. The X-ray diffraction analyses of the complexes show that the Ni(II) ion and Zn(II) ion centers are six-coordinated while the Cu(II) ion center is five-coordinated. The three supramolecular complexes contain the same ligands, namely DPAP-SHZ and 2,2′-bipy. However, their hydrogen bonds are significantly different, and this variation apparently is responsible for the dissimilar structures of the three supramolecular complexes.  相似文献   

9.
Two organic-inorganic hybrid polymers, {[Tb(μ2-bp3dc)(NO3)(H2O)4] · 2H2O}n (1) and {[Ni(μ22-bp3dc)(H2O)3] · H2O}n (2) (bp3dc = 2,2′-bipyridine-3,3′-dicarboxylate) have been hydrothermally synthesized from 2,2′-bipyridine-3,3′-diformylhydrazide (bp3dh) and characterized by the elemental analyses, IR spectrum, TG analysis and the single crystal X-ray diffraction. Polymer 1 shows a 1D linear chain structure, in which extensive hydrogen bonding between the deprotonated carboxylates, nitrate ions, and coordinated water molecules result in a 3D network which also contains face-to-face π-π interactions between adjacent bp3dc ligands. Polymer 2 is a 1D helical chain, and the interchain hydrogen bonding interactions also contribute to the final 3D network. The bridging bp3dc ligands in 1 adopt the anti-bridging bidentate mode, while that in 2 adopt the chelating bridging tridentate mode. The solid-state magnetic properties of the Tb and Ni complexes demonstrated the presence of weak antiferromagnetic exchange interactions, caused by interaction between the neighbouring ions along the 2,2′-bipyridine-3,3′-dicarboxylate bridged chain.  相似文献   

10.
Interaction of [Cp*RuCl(μ-Cl)]2 with 2,2′-bipyridine (2,2′-bipy) in the presence of Na[PF6] gave a chloride bridging dinuclear complex [{Cp*Ru(2,2′-bipy)}2(μ-Cl)][PF6] (1). In the crystal structure, the cation [{Cp*Ru(2,2′-bipy)}2(μ-Cl)]+ contains a bent Ru-Cl-Ru linkage with an angle of 141.87(12)°. The tris(μ-hydroxo)diruthenium complex [{(η6-p-cymene)Ru}2(μ-OH)3][BF4] in acetone solution was treated by 4,4′-bipyridine (4,4′-bipy) to give a hydroxo-bridged tetranuclear complex [{(η6-p-cymene)Ru}2(μ-OH)2(μ-4,4′-bipy)]2[BF4]4 (2). Complex 2 consists of four (η6-p-cymene)Ru moieties connected by two 4,4′-bipy and four hydroxo-bridging groups, forming a novel metallomacrocycle with alternating hydroxyl and 4,4′-bipy bridges between the ruthenium atoms. Spectroscopic properties along with electrochemistry of two organoruthenium (II) complexes 1 and 2 are reported.  相似文献   

11.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

12.
The interaction of LiN(SiMe3)CH2Ph with one equivalent of benzenitrile gave the N-silyl-N′-benzyl-benzamidinato-lithium compound [{Me3SiNC(Ph)N(CH2Ph)}Li(Et2O)]2 (1). The derivative zirconium and hafnium compounds were produced by the treatment of 1 with ZrCl4 or HfCl4 in tetrahydrofuran or diethyl ether at ambient temperature, respectively, with the general formula [Me3SiNC(Ph)N(CH2Ph)]3MCl (M = Zr (2), Hf (3)). Compounds 1, 2 and 3 were also characterized by X-ray single crystal diffraction and NMR analysis.  相似文献   

13.
Reactions between 4′-phenyl-terpyridine (L) and several Zn(II) salts (sulfate, nitrate, chloride or acetate) led to the formation of the complexes [Zn2(μ-O2SO2)2L2(CH3OH)2] (1), [Zn(NO3)L(H2O)]NO3 (2), [Zn(Cl)2L] (3) and [Zn(CH3COO)2L] (4) which were characterized by IR, 1H NMR and fluorescence spectroscopies, elemental analysis and single crystal X-ray diffraction. In the dinuclear molecule of 1 the Zn atom is hexacoordinated, with a N3O3 coordination environment and forms an octagonal ZnOSOZnOSO metallacycle. In the remaining structures, the metal atom is envisaged as possessing highly distorted N3X2 (X = O or Cl) square pyramid coordination geometries. The structure of 3 presents two different packing patterns which lead to distinct π-π stackings. In both structures 2 and 4, strong intermolecular hydrogen bonds were identified. The complexes exhibit promising in vitro tumor-inhibiting activities, which are higher than that of cisplatin, against the following human tumor cell lines: promyelocyticfina leukaemia (HL-60), hepatocellular carcinoma (Bel-7402), gastric carcinoma (BGC-823) and nasopharyngeal carcinoma (KB).  相似文献   

14.
Four structurally diverse complexes, [Cd(dppz)(bdoa)]n (1), [Zn(dppz)(bdoa)(H2O)]n (2), [Fe(dppz)2(bdoa)]n·2nH2O (3), and [Co2(dppz)2(bdoa)2(H2O)]n·3nH2O (4), where H2bdoa = benzene-1,4-dioxyacetic acid and dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been hydrothermally synthesized. Compounds 1-4 feature chain structures. There exist π-π interactions in the structures of 1, 2 and 4. Two neighboring chains of 1 are linked through the π-π interactions into a double chain supramolecular structure. The chains of 2 and 4 are further extended by the π-π interactions to form 3D and 2D supramolecular structures, respectively. The structural differences among such complexes show that the transition metals have important influences on their structures. The photoluminescent property of complex 2 and the magnetic property of complex 4 have also been investigated.  相似文献   

15.
The influence of coanion on self-assembly of CuSO4 and 4,4′-dipyridyl sulfide (dps) was studied in this paper. During the formation of Cu(II)/dps coordination polymers, coanions Cl, SCN and were added in the solution respectively. Three novel coordination polymers were obtained, {[Cu(dps)2 · (SO4)2][Cu(dps) · Cl · (H2O)2]2 · 12H2O}n (1 · 12H2O, a 3D network), {[Cu(SCN)2(dps)(CH3OH)2][Cu(dps)2 · SO4][Cu(dps)(CH3CH2OH)2 · SO4] · 5H2O}n (2 · 5H2O, a 3D network), and {[Cu(dps)2(H2O)2] · (PF6)2 · 3H2O}n (3 · 3H2O, a 2D lattice network). Different coanion shows different influence on framework construction. In 1 and 2, Cl and SCN act as terminal ligands and similar 3D frameworks were composed of [Cu(dps)] layer with larger cavity (ca. 400 Å) and sulfate bridge; in 3, replaces entirely and the 3D framework was broken due to the removal of bridging anions. However, a 2D [Cu(dps)]4 undulating grid was preserved in 3.  相似文献   

16.
A new 1,1′-bisferrocenylpyrimidine ligand [{(η5-C5H4)-N2C4H-2CH3}2Fe] 1 was conveniently prepared via the coupling reaction of 1,1′-dichloromercuriferrocene and 4,6-dimethyl-2-iodopyrimidine, and its monophosphine-palladacycle complexes 2-3 were also readily obtained from the cyclopalladation reactions and bridge-splitting reactions. These compounds have been characterized by 1H NMR, IR, ESI-MS, and elemental analysis. The complex 2 was found to be a biscyclopalladated complex, while the complex 3 was a monocyclopalladated complex. Additionally, their detailed structures have been determined by X-ray single-crystal diffraction. The most striking common feature of the structures of 2-3 is intermolecular C-H···Cl hydrogen bonds, which are attributed to construct the 1D chain structures.  相似文献   

17.
Four analogs with 3′-O-alkyl groups (9a: CH3, 9b: C2H5, 9c: C13H27 or 9d: CH2Ph) instead of the 3′-O-sulfate anion in salacinol (1), a naturally occurring potent α-glucosidase inhibitor, were synthesized by the coupling reaction of 1,4-dideoxy-1,4-epithio-d-arabinitols (18a and 18b) with appropriate epoxides (10a-10d). These analogs showed equal or considerably higher inhibitory activity against rat small intestinal α-glucosidases than the original sulfate (1), and one of them (9d) was found more potent than currently used α-glucosidase inhibitors as antidiabetics. Thus, introduction of a hydrophobic moiety at the C3′ position of this new class of inhibitor was found beneficial for onset of stronger inhibition against these enzymes.  相似文献   

18.
The synthesis of tetrapeptide-based β-turn mimetics containing spirocyclic glucose-templated 3-hydroxyproline hybrids Glc3′(S)-5′(R)(CH2OH)HypH and Glc3′(S)-5′(S)(CH2OH)HypH as proline mimetics is presented. NMR-based conformational analysis of Ac-Leu-d-Phe-[Glc3′(S)-5′(R)(CH2OH)HypH]-Val-NMe2 and Ac-Leu-d-Phe-[Glc3′(S)-5′(S)(CH2OH)HypH]-Val-NMe2 demonstrates the presence of β-turn conformations. Different turn structures were observed by changing the stereochemistry at 5′-position of Glc3′(S)-5′(R)(CH2OH)HypH. The major prolyl amide cis isomer of glucose-protected tetrapeptide Ac-Leu-d-Phe-[Glc(MOM)43′(S)-5′(R)(CH2OMOM)HypH]-Val-NMe211 and glucose unprotected Ac-Leu-d-Phe-[Glc3′(S)-5′(R)(CH2OH)HypH]-Val-NMe213 forms a type VI β-turn conformation. In contrast, the major prolyl amide trans rotamer of tetrapeptide Ac-Leu-d-Phe-[Glc(MOM)43′(S)-5′(S)(CH2OMOM)HypH]-Val-NMe212 conserves a similar β-turn conformation as the Gramicidin S-based peptide fragment Ac-Leu-d-Phe-Pro-Val-NMe216.  相似文献   

19.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

20.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号