首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
2.
3.
4.
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea.  相似文献   

5.
The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston''s organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.  相似文献   

6.
The first centers for processing of odor information by animals lie in the olfactory lobe. Sensory neurons from the periphery synapse with interneurons in anatomically recognizable units, termed glomeruli, seen in both insects and vertebrates. The mechanisms that underlie the formation of functional maps of the odor-world in the glomeruli within the olfactory lobe remains unclear. We address the basis of sensory targeting in the fruitfly Drosophila and show that one class of sensory neurons, those of the Atonal lineage, plays a crucial role in glomerular patterning. Atonal-dependent neurons pioneer the segregation of other classes of sensory neurons into distinct glomeruli. Furthermore, correct sensory innervation is necessary for the arborization of projection neurons into glomeruli and for the elaboration of processes of central glial cells into the lobe.  相似文献   

7.
We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the deutocerebrum of the brain of the sphinx moth Manduca sexta. To distinguish between extra-and intracellular pools of the enzyme, some brains were treated prior to histochemical staining with echothiophate, an irreversible AChE inhibitor which penetrates cell membranes very slowly and, therefore, inhibits only extracellular AChE. In the antennal nerve, fascicles of presumably mechanosensory fibers show echothiophateinsensitive AChE activity. They bypass the antennal lobe and project to the antennal mechanosensory and motor center of the deutocerebrum. In the antennal lobe, fibers in the coarse neuropil, cell bodies in the lateral cell group, and all glomeruli exhibit AChE activity. In most ordinary glomeruli, echothiophate-sensitive AChE activity is concentrated in the outer cap regions, corresponding to the terminal arborizations of olfactory afferents. A previously unrecognized glomerulus in the ventro-median antennal lobe shows uniform and more intense AChE-specific staining that the other glomeruli. No AChE activity appeared to be associated with malespecific pheromone-sensitive afferents in the macro-glomerular complex. About 67 interneurons with somata in the lateral cell group of the antennal lobe show echo-thiophate-insensitive AChE activity. These neurous seem to be members of two types of antennal-lobe projection neurons with fibers passing through the outer-antenno-cerebral tract to the protocerebrum. AChE-stained arborizations of these neurons appear to invade all glomeruli, including three distinguishable subunits of the male-specific macroglomerular complex. In echothiophate-treated animals, the projections of one of these types of fiber form large terminals in the lateral horn of protocerebrum, which partly protrude into the adjacent glial cell layer. The results suggest that extracellularly accessible AChE is associated with ordinary olfactory receptor terminals but apparently not with pheromone-sensitive afferents. Intracellular AChE appears to be present in antennal mechanosensory fibers and in two types of olfactory projection neurons of the antennal lobe. The study provides further evidence for cholinergic neurotransmission of most antennal afferents. The AChE-containing interneurons might be cholinergic as well or use the enzyme for functions unrelated to hydrolysis of acetylcholine.Abbreviations ACh acetylcholine - AChE acetylcholinesterase - AL antennal lobe - AMMC antennal mechanosensory and motor center - ChAT choline acetyltransferase - IACT inner antenno-cerebral tract - MGC macroglomerular complex  相似文献   

8.
The primary olfactory centres of most vertebrates and most neopteran insects are characterized by the presence of spherical neuropils, glomeruli, where synaptic interactions between olfactory receptor neurons and second-order neurons take place. In the neopteran insect taxa investigated so far, receptor neurons of a specific physiological identity target one glomerulus and thus bestow a functional identity on the glomerulus. In moths, input from pheromone-specific receptor neurons is received in a male-specific structure of the antennal lobe, called the macroglomerular complex (MGC), which consists of a number of specialized glomeruli. Each glomerulus of the complex receives a set of peripheral sensory afferents that encode one of several compounds involved in sexual communication. The complex is also innervated by dendritic branches of antennal lobe output neurons called projection neurons, which transfer information from the antennal lobe to higher centres of the brain. A hypothesis stemming from earlier work on moths claims that the receptor neuron innervation pattern of the MGC should be reflected in the pattern of dendrites of projection neurons invading the different MGC glomeruli. In this study we show that in the noctuid moth Trichoplusia ni, as in several other noctuid moth species, this hypothesis does not hold. The degree of matching between axon terminals of receptor neurons and the dendritic branches of identified projection neurons that express similar physiological specificity is very low.  相似文献   

9.

Background

Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.

Methodology/Principal Findings

In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.

Conclusions/Significance

Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons.  相似文献   

10.
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete‐expressing local interneurons in development of the adult olfactory circuitry. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

11.
Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.  相似文献   

12.
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on the pheromonal response of olfactory interneurons, the response to the mixture of pheromone and plant odor is not yet known. Using the silkmoth, Bombyx mori, we investigated the physiology of interneurons in the antennal lobe (AL), the primary olfactory center in the insect brain, in response to a mixture of the primary pheromone component bombykol and cis-3-hexen-1-ol, a mulberry leaf volatile. Application of the mixture enhanced the pheromonal responses of projection neurons innervating the macroglomerular complex in the AL. In contrast, the mixture of pheromone and cis-3-hexen-1-ol had little influence on the responses of projection neurons innervating the ordinary glomeruli whereas other plant odors dynamically modified the response. Together this suggests moths can process plant odor information under conditions of simultaneous exposure to sex pheromone.  相似文献   

13.
The homeobox-encoding gene Prox1 and its Drosophila homologue prospero are key regulators of cell fate-specification. In the developing rodent cortex a sparse population of cells thought to correspond to late-generated cortical pyramidal neuron precursors expresses PROX1. Using a series of transgenic mice that mark cell lineages in the subcortical telencephalon and, more specifically, different populations of cortical interneurons, we demonstrate that neurons expressing PROX1 do not represent pyramidal neurons or their precursors but are instead subsets of cortical interneurons. These correspond to interneurons originating in the lateral/caudal ganglionic eminence (LGE/CGE) and a small number of preoptic area (POA)-derived neurons. Expression within the cortex can be detected from late embryonic stages onwards when cortical interneurons are still migrating. There is persistent expression in postmitotic cells in the mature brain mainly in the outer cortical layers. PROX1+ve interneurons express neurochemical markers such as calretinin, neuropeptide Y, reelin and vasoactive intestinal peptide, all of which are enriched in LGE/CGE- and some POA-derived cells. Unlike in the cortex, in the striatum PROX1 marks nearly all interneurons regardless of their origin. Weak expression of PROX1 can also be detected in oligodendrocyte lineage cells throughout the forebrain. Our data show that PROX1 can be used as a genetic lineage tracer of nearly all LGE/CGE- and subsets POA-derived cortical interneurons at all developmental and postnatal stages in vivo.  相似文献   

14.
This study reports on the structure of the antennal lobe of the pigeon louse, Columbicola columbae. Anterograde staining of antennal receptor neurons revealed an antennal lobe with a few diffuse compartments, an organization distinct from the typical spheroidal glomerular structure found in the olfactory bulb of vertebrates and the antennal lobe of many other insects. This anatomical arrangement of neuronal input is somewhat reminiscent of the aglomerular antennal lobe previously reported in psyllids and aphids. As in psyllids, reports on the odor-mediated behavior of C. columbae suggest that the olfactory sense is important in these animals and indicates that a glomerular organization of the antennal lobe may not be necessary to subtend odor-mediated behaviors in all insects. The diffuse or aglomerular antennal lobe organization found in these two Paraneopteran insect orders might represent an independently evolved reduction due to similar ecological constraints.  相似文献   

15.
Here we describe the antennal lobe of Libellula depressa (Odonata, Libellulidae), identified on the basis of the projections of the afferent sensory neurons stemming from the antennal flagellum sensilla. Immunohistochemical neuropil staining as well as antennal backfills revealed sensory neuron terminal arborizations covering a large portion of the antennal lobe. No clear glomerular structure was identified, thus suggesting an aglomerular antennal lobe condition as previously reported in Palaeoptera. The terminal arbors of backfilled sensory neurons do, however, form spherical knots, probably representing the connections between the few afferent neurons and the antennal lobe interneurons. The reconstruction revealed that the proximal part of the antennal nerve is divided into two branches that innervate two spatially separated areas of the antennal lobe, an anterioventral lobe and a larger posteriodorsal lobe. Our data are consistent with the hypothesis that one tract of the antennal nerve of L. depressa contains olfactory sensory neurons projecting into one of the sublobes, while the other tract contains thermo-hygroreceptive neurons projecting into the other sublobe.  相似文献   

16.
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.  相似文献   

17.
As one of the major hydrolases in Drosophila, trehalase (Treh) catalyzes the hydrolysis of trehalose into glucose providing energy for flight muscle activity. Treh is highly conserved from bacteria to humans, but little is known about its function during animal development. Here, we analyze the function of Treh in Drosophila optic lobe development. In the optic lobe, neuroepithelial cells (NEs) first divide symmetrically to expand the stem cell pool and then differentiate into neuroblasts, which divide asymmetrically to generate medulla neurons. We find that the knockdown of Treh leads to a loss of the lamina and a smaller medulla. Analyses of Treh RNAi-expressing clones and loss-of-function mutants indicate that the lamina and medulla phenotypes result from neuroepithelial disintegration and premature differentiation into medulla neuroblasts. Although the principal role of Treh is to generate glucose, the Treh loss-of-function phenotype cannot be rescued by exogenous glucose. Thus, our results indicate that in addition to being a hydrolase, Treh plays a role in neuroepithelial stem cell maintenance and differentiation during Drosophila optic lobe development.  相似文献   

18.
19.
Whole-cell patch-clamp recording was used to characterize olfactory projection neurons in an isolated brain preparation of the spiny lobster, Panulirus argus. Responses to electrical stimulation of the olfactory afferents were recorded from projection neuron somata using biocytin-filled electrodes. All projection neurons were multiglomerular, innervating up to 80% of all olfactory lobe glomeruli, but the innervation was heterogeneous. Most neurons densely innervated only 3–4 glomeruli; the remaining glomeruli in their dendritic arbor were sparsely innervated, thereby creating two distinct patterns of intraglomerular branching. Projection neurons responded to orthodromic stimulation with an initial depolarization and spiking followed by a 1–3 s hyperpolarization. The inhibitory phase of the response was lower in threshold and longer in latency than the excitatory phase, a response pattern also reported in olfactory projection neurons of insects and vertebrates. The somata of the projection neurons supported voltage-activated currents and TTX-sensitive action potentials, suggesting that the soma, although spatially separated from the axon and dendrites, may play a significant functional role in these cells. Dye coupling between some projection neurons correlated with the presence of multiple amplitude action potentials, suggesting that at least some projection neurons may be coupled via gap junctions.  相似文献   

20.
An isolated brain preparation was used to characterize neurons innervating the accessory lobe (AL) of the spiny lobster (Panulirus argus). Four distinct classes of neurons responded to electrical stimulation of the olfactory (antennular) nerve. These cells responded to electrical stimulation with a long and variable latency; they also responded to odor stimulation in a nose-brain preparation. Neurons connecting the AL with the olfactory lobe branched in the central AL layer and selectively innervated olfactory lobe glomeruli. These cells had response latencies which were significantly shorter than those of other AL neurons. Intrinsic AL interneurons were heterogeneous as a population, and most arborized in irregular but circumscribed regions of either the lateral or medial layers. The final class of neurons branched ipsilaterally in the deutocerebral neuropil and bilaterally innervated only a few AL glomeruli. The physiology and morphology of these four classes of neurons confirm an olfactory function for the AL and identify the input and output regions of the lobe. Based on these findings, we propose that the AL processes odor information in the context of higher order multimodal input.Abbreviations AL accessory lobe - DCN deutocerebral neuropil - OGT olfactory-globular tract - OGTN olfactory-globular tract neuropil - OL olfactory lobe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号