首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In addition to helminthic infections, elevated serum IgE levels were observed in many protozoal infections, while their contribution during immune response to these pathogens remained unclear. As IgE/antigen immune complexes (IgE-IC) bind to human cells through FcεRI or FcεRII/CD23 surface molecules, the present study aimed to identify which functional receptor may be involved in IgE-IC interaction with human macrophages, the major effector cell during parasite infection.

Methodology/Principal Findings

Human monocyte-derived macrophages were infected with Toxoplasma gondii before being incubated with IgE-IC. IgE receptors were then identified using appropriate blocking antibodies. The activation of cells and parasiticidal activity were evaluated by mediator quantification and direct counting of infected macrophages. RNAs were extracted and cell supernatants were also collected for their content in tumor necrosis factor (TNF)-α, interleukin-10 (IL-10) and nitrites. Sera from symptomatic infected patients were also tested for their content of IgE, IL-10 and nitrites, and compared to values found in healthy donors. Results showed that IgE-IC induced intracellular elimination of parasites by human macrophages. IgE-mediated effect was FcεRI-independent, but required cross-linking of surface FcεRII/CD23, cell activation and the generation of nitric oxide (NO). Although TNF-α was shown to be produced during cell activation, this cytokine had minor contribution in this phenomenon while endogenous and exogenous IL-10 down-regulated parasite killing. Inverse relationship was found between IL-10 and NO expression by infected human macrophages at both mRNA and mediator levels. The relationship between these in vitro data and in vivo levels of various factors in T. gondii infected patients supports the involvement of CD23 antigen and IL-10 expression in disease control.

Conclusion

Thus, IgE may be considered as immune mediator during antiprotozoal activity of human macrophages through its ability to trigger CD23 signaling. Increased cell activation by IgE-IC may also account for chronic inflammatory diseases observed in some patients.  相似文献   

2.

Background

In a mouse model of viral induced atopic disease, expression of FcεRI on dendritic cells is critical. While adult human conventional (cDC) and plasmacytoid (pDC) dendritic cells have been shown to express FcεRI, it is not known if this receptor is expressed in childhood and how its expression is governed by IgE.

Methods

Following informed consent of subjects (n = 27, aged 12–188 months), peripheral blood was stained for surface expression of CD19, ILT7, CD1c, IgE, FcεRI and analyzed by flow cytometry (cDC: CD19 ILT7 CD1c+; pDC: CD19 ILT7+ CD1c). Total and specific serum IgE levels to food and inhalant allergens were determined by ImmunoCAP, and the relationship between FcεRI expression on dendritic cells and sensitization, free IgE, cell bound IgE, and age was determined.

Results

Independent of sensitization status, FcεRI expression was noted on cDC and pDC as early as 12 months of age. Serum IgE level correlated with expression of FcεRI on cDC, but not pDC. Based on the concentration of IgE, a complex relationship was found between surface bound IgE and expression of FcεRI on cDC. pDC exhibited a linear relationship of FcεRI expression and bound IgE that was consistent through all IgE concentrations.

Conclusions

In children, FcεRI expression on cDC and pDC is modulated differently by serum and cell bound IgE. IgE governance of FcεRI expression on cDC depends upon a complex relationship. Further studies are needed to determine the functional roles of FcεRI on cDC and pDC.  相似文献   

3.
Interleukin (IL)-10 is an anti-inflammatory cytokine that could be potentially applied for clinical therapy. However, its short circulating half-life in the serum limits its clinical applications. In this study, we designed a fusion protein containing human IL-10 and an IgG Fc fragment (hIL-10/Fc), and expressed it in Pichia pastoris. This hIL-10/Fc fusion protein was purified from the culture supernatant using MabSelect affinity chromatography and size-exclusion chromatography. The hIL-10/Fc yield was about 5mg/L in shake flasks, with purity exceeding 95%. In addition, the hIL-10/Fc fusion protein suppressed the phytohemagglutinin-induced IFN-γ production in human peripheral blood mononuclear cells. Pharmacokinetic study also revealed that hIL-10/Fc has a prolonged circulating half-life of about 30h in rats. More importantly, the hIL-10/Fc fusion protein displayed highly specific biological activity, which was slightly higher than that of the commercial recombinant human IL-10 (rhIL-10). Therefore, P. pastoris is useful in the large-scale production of hIL-10/Fc fusion protein for both research and therapeutic applications.  相似文献   

4.
Human interleukin-6 (hIL-6) acts as a growth factor in several human B lymphoid cancers. As human herpesvirus-8 (HHV-8) encodes for a viral IL-6 (vIL-6), the viral cytokine may be responsible for several manifestations of HHV-8-related disorders. Using an anti-hIL-6 mAb (B-E8) which does not recognize vIL-6, we investigated the involvement of the human cytokine in the proliferation of HHV-8-positive primary effusion lymphoma (PEL) cells. In vitro, 5/5 PEL cell lines produced hIL-6 (4 to 1,200 pg/ml). The EBV- HHV-8+ cell line (BCBL-1) was adapted to grow in SCID mice. hIL-6 was detected in the serum of mice with grafts, as well as human soluble CD138 (sCD138) and human IL-10 (hIL-10). The serum level of these mediators increased with tumor progression. The effect of treatment with the B-E8 mAb on the tumor progression and survival was evaluated. This treatment significantly slowed down the tumor development: on day 54, there were more mice with low levels of sCD138 and hIL-10 in the treated group than in controls (p = 0.03 and 0.02, respectively); treatment also delayed death (median date of death was day 65 for control mice and day 84 for anti-hIL-6 mAb-treated mice; p < 0.02). Thus, hIL-6 is expressed in addition to vIL-6 in HHV-8-positive malignant B lymphocytes, and the viral cytokine does not totally substitute for human IL-6 in promoting tumor progression.  相似文献   

5.
6.

Background

Inorganic mercury (Hg) induces a T-cell dependent, systemic autoimmune condition (HgIA) where activating Fcγ-receptors (FcγRs) are important for the induction. In this study we examined the influence of activating FcγRs on circulating levels and organ localization of immune complexes (IC) in HgIA.

Methods and Principal Findings

Mercury treated BALB/c wt mice showed a significant but modest increase of circulating IC (CIC) from day 12 until day 18 and day 35 for IgG2a- and IgG1- CIC, respectively. Mercury-treated mice lacking the trans-membrane γ-chain of activating FcγRs (FcRγ−/−) had significantly higher CIC levels of both IgG1-CIC and IgG2a-CIC than wt mice during the treatment course. The hepatic uptake of preformed CIC was significantly more efficient in wt mice compared to FcγR−/− mice, but also development of extrahepatic tissue IC deposits was delayed in FcRγ−/− mice. After 35 days of Hg treatment the proportion of immune deposits, as well as the amounts was significantly reduced in vessel FcRγ−/− mice compared to wt mice.

Conclusions

We conclude that mice lacking functional activating FcγRs respond to Hg with increased levels and altered quality of CIC compared with wt mice. Lack of functional activating FcγRs delayed the elimination of CIC, but also significantly reduced extrahepatic tissue localization of CIC.  相似文献   

7.
Abstract

The interleukin-13 receptor is characterized by ligand-binding and crosslinking studies and compared with the interleukin-4 receptor. Crosslinking of radio-labeled hIL-4 and hIL-13 to the receptors on human carcinoma and mast cell lines demonstrated a predominant subunit at 130 kDa with two other minor bands of lower molecular mass (75 kDa and 65 kDa) in autoradiography. All binding of 125I-IL-13 was specifically blocked when the carcinoma cell suspensions were incubated with an excess of unlabeled hIL-4. However, unlabeled hIL-13 was unable to completely displace 125I-hIL-4 from the 130 kDa protein. In addition, 125I-hIL-13 showed no binding to mouse fibroblast cells transfected with human 130 kDa hIL-4 receptor c-DNA. Using weighted nonlinear computer modeling of the data from several equilibrium binding studies with human mast cells, a model of two binding sites for IL-4 (Kd = 50 and 190 pmol/L) and one site for IL-13 (Kd=100 pmol/L) fitted better than a one site model with a very high level of significance (F = 10.66, P < 0.0001). It can be concluded that human IL-4R and hIL-13R are similar but distinct. This conclusion is supported here for the first time by a strong statistical criterion.  相似文献   

8.
Interleukin-10 (IL-10) is a pleiotropic immunosuppressive cytokine that has a wide range of effects in controlling inflammatory responses. Viral IL-10 (vIL-10) is a homologue of human IL-10 (hIL-10) produced by Epstein-Barr virus (EBV). Both hIL-10 and vIL-10 bind to the soluble extracellular fragment of the cytokine receptor IL-10R1 (shIL-10R1). The stoichiometry of the vIL-10 : shIL-10R1 complex has been found to be the same as hIL-10 : shIL-10R1, with two vIL-10 dimers binding to four shIL-10R1 monomers. Complexes of both hIL-10 and vIL-10 with glycosylated shIL-10R1 could not be crystallized. Controlled deglycosylation using peptide : N-glycosidase F and endo-beta-N-acetylglucosaminidase F3 resulted in the formation of crystals of both hIL-10 : shIL-10R1 and vIL-10 : shIL-10R1 complexes, indicating that the difficulty in the crystal formation was largely due to the presence of complex carbohydrate side chains. The availability of the structure of the ligand-receptor complexes should facilitate our understanding of the basis of the interaction between IL-10 and the IL-10 receptor.  相似文献   

9.

Objective

The expression of FcγRIIIa/CD16 may render monocytes targets for activation by IgG-containing immune complexes (IC). We investigated whether FcγRIIIa/CD16 was upregulated in rheumatoid arthritis (RA), associated with TNF production in response to IC-stimulation, and if this predicted response to methotrexate therapy.

Methods

FcγRIIIa/CD16 expression on CD14low and CD14++ monocytes was measured by flow cytometry in healthy controls and RA patients (early and long-standing disease). Intracellular TNF-staining was carried out after in vitro LPS or heat-aggregated immunoglobulin (HAG) activation. FcγRIIIa/CD16 expression pre- and post-steroid/methotrexate treatment was examined.

Results

Increased FcγRIIIa/CD16 expression on CD14++ monocytes in long-standing RA patients compared to controls was demonstrated (p = 0.002) with intermediate levels in early-RA patients. HAG-induced TNF-production in RA patients was correlated with the percentage of CD14++ monocytes expressing FcγRIIIa/CD16 (p<0.001). The percentage of CD14++ monocytes expressing FcγRIIIa/CD16 at baseline in early DMARD-naïve RA patients was negatively correlated with DAS28-ESR improvement 14-weeks post-methotrexate therapy (p = 0.003) and was significantly increased in EULAR non-responders compared to moderate (p = 0.01) or good responders (p = 0.003). FcγRIIIa/CD16 expression was not correlated with age, presence of systemic inflammation or autoantibody titers.

Conclusion

Increased FcγRIIIa/CD16 expression on CD14++ monocytes in RA may result in a cell that has increased responsiveness to IC-stimulation. This monocyte subset may contribute to non-response to methotrexate therapy.  相似文献   

10.
The cytokine interleukin-3 (IL-3) is a critical regulator of inflammation and immune responses in mammals. IL-3 exerts its effects on target cells via receptors comprising an IL-3-specific α-subunit and common β-subunit (βc; shared with IL-5 and granulocyte-macrophage colony-stimulating factor) or a β-subunit that specifically binds IL-3 (βIL-3; present in mice but not humans). We recently identified two splice variants of the α-subunit of the IL-3 receptor (IL-3Rα) that are relevant to hematopoietic progenitor cell differentiation or proliferation: the full length (“SP1” isoform) and a novel isoform (denoted “SP2”) lacking the N-terminal Ig-like domain. Although our studies demonstrated that each mouse IL-3 (mIL-3) Rα isoform can direct mIL-3 binding to two distinct sites on the βIL-3 subunit, it has remained unclear which residues in mIL-3 itself are critical to the two modes of βIL-3 recognition and whether the human IL-3Rα SP1 and SP2 orthologs similarly instruct human IL-3 binding to two distinct sites on the human βc subunit. Herein, we describe the identification of residues clustering around the highly conserved A-helix residue, Glu23, in the mIL-3 A- and C-helices as critical for receptor binding and growth stimulation via the βIL-3 and mIL-3Rα SP2 subunits, whereas an overlapping cluster was required for binding and activation of βIL-3 in the presence of mIL-3Rα SP1. Similarly, our studies of human IL-3 indicate that two different modes of βc binding are utilized in the presence of the hIL-3Rα SP1 or SP2 isoforms, suggesting a possible conserved mechanism by which the relative orientations of receptor subunits are modulated to achieve distinct signaling outcomes.  相似文献   

11.

Background

Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.

Methods and Findings

We evaluated serum samples from 80 residents of a dengue endemic country, Malaysia, for neutralizing activity, and infection-enhancing activity at 1∶10 serum dilution by using FcγR-negative BHK cells and FcγR-expressing BHK cells. The serum samples consisted of a panel of patients with acute DENV infection (31%, 25/80) and a panel of donors without acute DENV infection (69%, 55/80). A high proportion of the tested serum samples (75%, 60/80) demonstrated DENV neutralizing activity (PRNT50≥10) and infection-enhancing activity. Eleven of 18 serum samples from patients with acute secondary DENV infection demonstrated neutralizing activity to the infecting serotype determined by using FcγR-negative BHK cells (PRNT50≥10), but not when determined by using FcγR-expressing cells.

Conclusion

Human serum samples with low neutralizing activity determined by using FcγR-negative cells showed DENV infection-enhancing activity using FcγR-expressing cells, whereas those with high neutralizing activity determined by using FcγR-negative cells demonstrate low or no infection-enhancing activity using FcγR-expressing cells. The results suggest an inverse relationship between neutralizing antibody titer and infection-enhancing activity, and that neutralizing activity determined by using FcγR-expressing cells, and not the activity determined by using FcγR-negative cells, may better reflect protection to DENV infection in vivo.  相似文献   

12.
Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14+ monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1β, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4+ T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4+ T cell responses at sites of infection.  相似文献   

13.
Interleukin (IL-) 36 cytokines (previously designated as novel IL-1 family member cytokines; IL-1F5– IL-1F10) constitute a novel cluster of cytokines structurally and functionally similar to members of the IL-1 cytokine cluster. The effects of IL-36 cytokines in inflammatory lung disorders remains poorly understood. The current study sought to investigate the effects of IL-36α (IL-1F6) and test the hypothesis that IL-36α acts as a pro-inflammatory cytokine in the lung in vivo. Intratracheal instillation of recombinant mouse IL-36α induced neutrophil influx in the lungs of wild-type C57BL/6 mice and IL-1αβ−/− mice in vivo. IL-36α induced neutrophil influx was also associated with increased mRNA expression of neutrophil-specific chemokines CXCL1 and CXCL2 in the lungs of C57BL/6 and IL-1αβ−/− mice in vivo. In addition, intratracheal instillation of IL-36α enhanced mRNA expression of its receptor IL-36R in the lungs of C57BL/6 as well as IL-1αβ−/− mice in vivo. Furthermore, in vitro incubation of CD11c+ cells with IL-36α resulted in the generation of neutrophil-specific chemokines CXCL1, CXCL2 as well as TNFα. IL-36α increased the expression of the co-stimulatory molecule CD40 and enhanced the ability of CD11c+ cells to induce CD4+ T cell proliferation in vitro. Furthermore, stimulation with IL-36α activated NF-κB in a mouse macrophage cell line. These results demonstrate that IL-36α acts as a pro-inflammatory cytokine in the lung without the contribution of IL-1α and IL-1β. The current study describes the pro-inflammatory effects of IL-36α in the lung, demonstrates the functional redundancy of IL-36α with other agonist cytokines in the IL-1 and IL-36 cytokine cluster, and suggests that therapeutic targeting of IL-36 cytokines could be beneficial in inflammatory lung diseases.  相似文献   

14.
Meprins have been implicated in the pathogenesis of several inflammatory diseases, including inflammatory bowel disease, in which the cytokine IL-6 is a prominent effector molecule. Because IL-6 levels are elevated markedly in meprin α and α/β knockout mice in an experimental model of inflammatory bowel disease, the interaction between meprins and IL-6 was studied. The results demonstrate that rodent and human meprin A and B cleave IL-6 to a smaller product and, subsequently, are capable of extensive degradation of the cytokine. Analysis of the limited degradation product formed by meprin A indicated that three to five amino acids are removed from the C terminus of the cytokine. Meprin A and meprin B cleaved IL-6 with micromolar affinities (Km of 4.7 and 12.0 μm, respectively) and with high efficiencies (kcat/Km of 0.2 and 2.5 (m−1/s−1) × 106, respectively). These efficiency constants are among the highest for known meprin substrates. Madin-Darby canine kidney cells transiently transfected with meprin α or meprin β constructs also cleave exogenous IL-6. Both human and murine IL-6 cleaved by meprin A or B are inactivated, as demonstrated by their decreased capability to stimulate proliferation of B9 cells. These results are consistent with the proposition that one function of meprin metalloproteases is to modulate inflammation by inactivating IL-6.  相似文献   

15.

Background

The type-1 cytokine pathway plays a pivotal role in immunity against intracellular bacterial pathogens such as Salmonellae and Mycobacteria. Bacterial stimulation of pattern recognition receptors on monocytes, macrophages and dendritic cells initiates this pathway, and results in the production of cytokines that activate lymphocytes to produce interferon (IFN)-γ. Interleukin (IL)-12 and IL-23 are thought to be the key cytokines required for initiating a type-1 cytokine immune response to Mycobacteria and Salmonellae. The relative contribution of IL-23 and IL-12 to this process is uncertain.

Methodology/Principal Findings

We show that various TLR agonists induce the production of IL-23 but not IL-12 in freshly isolated human monocytes and cultured human macrophages. In addition, type 1 pro-inflammatory macrophages (Mϕ1) differentiated in the presence of GM-CSF and infected with live Salmonella produce IL-23, IL-1β and IL-18, but not IL-12. Supernatants of Salmonella-infected Mϕ1 contained more IL-18 and IL-1β as compared with supernatants of Mϕ1 stimulated with isolated TLR agonists, and induced IFN-γ production in human CD56+ cells in an IL-23 and IL-1β-dependent but IL-12-independent manner. In addition, IL-23 together with IL-18 or IL-1β led to the production of GM-CSF in CD56+ cells. Both IFN-γ and GM-CSF enhanced IL-23 production by monocytes in response to TLR agonists, as well as induced IL-12 production.

Conclusions/Significance

The findings implicate a positive feedback loop in which IL-23 can enhance its release via induction of IFN-γ and GM-CSF. The IL-23 induced cytokines allow for the subsequent production of IL-12 and amplify the IFN-γ production in the type-1 cytokine pathway.  相似文献   

16.
Infection of macrophages with the protozoan parasite Toxoplasma gondii results in inhibition of a large panel of LPS-responsive cytokines, including TNF-α, while leaving others such as IL-10 intact. Recent studies provide evidence that the parasite interferes with chromatin remodeling at the TNF-α promoter that is normally associated with LPS stimulation, but that is not required for TLR4 induction of IL-10. Here, we examined the effect of Toxoplasma on IL-10 induced by simultaneous signaling through TLR4 and FcγR, a combined stimulus that triggers histone H3 covalent modification at the IL-10 promoter resulting in high level IL-10 cytokine production. We show that the parasite inhibits high level IL-10 production and prevents histone H3 Ser10 phosphorylation and Lys9/14 acetylation at the IL-10 promoter. These results provide compelling evidence that T. gondii targets the host cell chromatin remodeling machinery to down-regulate cytokine responses in infected macrophages.  相似文献   

17.
18.

Background

Cytokine response plays a vital role in various human lipopolysaccharide (LPS) infectious and inflammatory diseases. This study aimed to find genetic variants that might affect the levels of LPS-induced interleukin (IL)-6, IL-8, IL-10, IL-1ra and tumor necrosis factor (TNF)-α cytokine production.

Methods

We performed an initial genome-wide association study using Affymetrix Human Mapping 500 K GeneChip® to screen 130 healthy individuals of Danish descent. The levels of IL-6, IL-8, IL-10, IL-1ra and TNF-α in 24-hour LPS-stimulated whole blood samples were compared within different genotypes. The 152 most significant SNPs were replicated using Illumina Golden Gate® GeneChip in an independent cohort of 186 Danish individuals. Next, 9 of the most statistical significant SNPs were replicated using PCR-based genotyping in an independent cohort of 400 Danish individuals. All results were analyzed in a combined study among the 716 Danish individuals.

Results

Only one marker of the 500 K Gene Chip in the discovery study showed a significant association with LPS-induced IL-1ra cytokine levels after Bonferroni correction (P<10−7). However, this SNP was not associated with the IL-1ra cytokine levels in the replication dataset. No SNPs reached genome-wide significance for the five cytokine levels in the combined analysis of all three stages.

Conclusions

The associations between the genetic variants and the LPS-induced IL-6, IL-8, IL-10, IL-1ra and TNF-α cytokine levels were not significant in the meta-analysis. This present study does not support a strong genetic effect of LPS-stimulated cytokine production; however, the potential for type II errors should be considered.  相似文献   

19.
Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and β-carotene significantly inhibited the antigen-induced release of β-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (FcϵRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited FcϵRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of FcϵRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of FcϵRI to lipid rafts, which are known as platforms of the aggregation of FcϵRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of FcϵRI to lipid rafts. This is the first report that focused on the aggregation of FcϵRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts.Mast cells play pivotal roles in inflammation and immediate-type allergic reactions by secreting biologically active substances including histamine, eicosanoids, proteolytic enzymes, cytokines, and chemokines. The antigen-induced aggregation of the high affinity IgE receptor (FcϵRI)2 expressed on the cell surface triggers the degranulation of mast cells. FcϵRI has a tetrameric structure comprised of an IgE binding α-chain, a β-chain, and a disulfide-linked γ-chain dimer (1). The aggregation of FcϵRI by means of multivalent antigen-IgE complexes activates cytosolic Src protein-tyrosine kinases, such as Fyn and Lyn, which then regulate the activation of mast cells (2). Fyn kinase plays a key role in mast cell degranulation and in cytokine production by regulating Gab2 and phosphatidylinositol 3-kinase (3). Phosphorylated Lyn activates immunoreceptor tyrosine-based activation motifs of the β- and γ-chains, and the phosphorylated immunoreceptor tyrosine-based activation motifs of the γ-chain phosphorylate Syk kinase. Thereafter, a number of other signaling and adaptor molecules, such as phospholipase Cγ and protein kinase C (PKC), are phosphorylated (4). Phospholipase Cγ catalyzes the generation both of inositol 1,4,5-trisphosphate and diacylglycerol. Inositol 1,4,5-trisphosphate is an inducer of intracellular Ca2+ mobilization, which is critical for degranulation, and diacylglycerol is an activator of PKC (5). Activated PKC is translocated from the cytosol to the plasma membrane fraction. PKC regulates many functions of mast cells, including leukotriene generation, cytokine synthesis, and degranulation (6, 7).Many studies have provided evidence that lipid rafts are involved in the activation of intracellular signaling molecules mediated by FcϵRI, the T cell receptor, the B cell receptor, and other cell surface receptors (8, 9). Lipid rafts are originally defined as microdomains in terms of their resistance to solubilization by non-ionic detergents such as Triton X-100, and are enriched in sphingolipids and cholesterol (10). Because numerous cell surface receptors and palmitoyl-anchored signaling molecules, including Src family tyrosine kinases, are associated with lipid rafts, it has been suggested that lipid rafts function as platforms regulating the induction of signaling pathways. Aggregated, but not non-aggregated, FcϵRIs are localized in lipid rafts fractionated by sucrose density gradient ultracentrifugation of detergent-treated cells (11, 12). The translocation of FcϵRI to lipid rafts is the key event that initiates the degranulation.Carotenoids are a class of widespread natural pigments that have multiple functions (13). Dietary carotenoids have been associated with a decreased risk for certain types of immune diseases, such as asthma and atopic dermatitis. Consumption of β-carotene suppresses the production of specific IgE and IgG1 and decreases antigen-induced anaphylactic responses due to an improvement of the Th1-Th2 balance (14). Furthermore, β-carotene blocks nuclear translocation of the NF-κB p65 subunit, which correlates with the prevention of IκBα phosphorylation and degradation (15). It has been reported that fucoxanthin, a major carotenoid of edible brown algae, shows an anti-inflammatory effect on endotoxin-induced uveitis by decreasing the production of prostaglandin E2 and tumor necrosis factor-α (16). Astaxanthin, found in the red pigment of crustacean shells and salmon, also has anti-inflammatory effects due to its suppression of NF-κB activation (17, 18). It has been assumed that these anti-inflammatory activities of carotenoids are due to their antioxidant activity. However, there is no information to date about the direct effect of carotenoids on the degranulation of mast cells.In the present study, we investigated the effects of carotenoids on antigen-induced degranulation of RBL-2H3 cells and mouse bone marrow-derived mast cells. In addition, to elucidate the mechanism of the modulation of degranulation by carotenoids, we focused on FcϵRI-mediated signaling in mast cells.  相似文献   

20.
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号