首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The mitochondrial electron transport chain includes an alternative oxidase (AOX) that is hypothesized to aid photosynthetic metabolism, perhaps by acting as an additional electron sink for photogenerated reductant or by dampening the generation of reactive oxygen species. Gas exchange, chlorophyll fluorescence, photosystem I (PSI) absorbance, and biochemical and protein analyses were used to compare respiration and photosynthesis of Nicotiana tabacum ‘Petit Havana SR1’ wild-type plants with that of transgenic AOX knockdown (RNA interference) and overexpression lines, under both well-watered and moderate drought-stressed conditions. During drought, AOX knockdown lines displayed a lower rate of respiration in the light than the wild type, as confirmed by two independent methods. Furthermore, CO2 and light response curves indicated a nonstomatal limitation of photosynthesis in the knockdowns during drought, relative to the wild type. Also relative to the wild type, the knockdowns under drought maintained PSI and PSII in a more reduced redox state, showed greater regulated nonphotochemical energy quenching by PSII, and displayed a higher relative rate of cyclic electron transport around PSI. The origin of these differences may lie in the chloroplast ATP synthase amount, which declined dramatically in the knockdowns in response to drought. None of these effects were seen in plants overexpressing AOX. The results show that AOX is necessary to maintain mitochondrial respiration during moderate drought. In its absence, respiration rate slows and the lack of this electron sink feeds back on the photosynthetic apparatus, resulting in a loss of chloroplast ATP synthase that then limits photosynthetic capacity.The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons in the ubiquinone pool partition between the cytochrome (cyt) pathway (consisting of Complex III, cyt c, and Complex IV) and alternative oxidase (AOX; Finnegan et al., 2004; Millar et al., 2011; Vanlerberghe, 2013). AOX directly couples ubiquinol oxidation with O2 reduction to water. This reduces the energy yield of respiration because, unlike Complexes III and IV, AOX is not proton pumping. Hence, AOX is an electron sink, the capacity of which is little encumbered by rates of ATP turnover. In this way, AOX might be well suited to prevent cellular over-reduction. Supporting this, transgenic Nicotiana tabacum leaves with suppressed amounts of AOX have increased concentrations of mitochondrial-localized superoxide radical (O2) and nitric oxide, the products that can arise when an over-reduced ETC results in electron leakage to O2 or nitrite (Cvetkovska and Vanlerberghe, 2012, 2013).In angiosperms, AOX is encoded by a small gene family (Considine et al., 2002). In Arabidopsis (Arabidopsis thaliana), mutation or knockdown of the stress-responsive AOX1a gene family member dramatically reduces AOX protein and the capacity of the AOX respiration pathway to consume O2. Several studies have shown that this loss of AOX capacity in Arabidopsis aox1a plants affected processes such as growth, carbon and energy metabolism, and/or the cellular network of reactive oxygen species (ROS) scavengers (Fiorani et al., 2005; Umbach et al., 2005; Watanabe et al., 2008; Giraud et al., 2008; Skirycz et al., 2010). However, in studies in which respiration was measured, it was consistently reported that the lack of AOX capacity had no significant impact on the respiration rate in the dark (RD; Umbach et al., 2005; Giraud et al., 2008; Strodtkötter et al., 2009; Florez-Sarasa et al., 2011; Yoshida et al., 2011b; Gandin et al., 2012). The exceptions are two reports that RD was actually higher in aox1a than in the wild type under some conditions (Watanabe et al., 2008; Vishwakarma et al., 2014). To our knowledge, how the lack of AOX affects respiration rate in the light (RL) is not reported in Arabidopsis or other species.Numerous studies have established the importance of mitochondrial metabolism in the light to optimize photosynthesis (Hoefnagel et al., 1998; Raghavendra and Padmasree, 2003). In recent years, the potential importance of specifically AOX respiration during photosynthesis has been examined using the Arabidopsis aox1a plants (Giraud et al., 2008; Strodtkötter et al., 2009; Zhang et al., 2010; Florez-Sarasa et al., 2011; Yoshida et al., 2011a, 2011b). In general, these studies reported small perturbations of photosynthesis in standard-grown aox1a plants, including slightly lower rates of CO2 uptake or O2 release (Gandin et al., 2012; Vishwakarma et al., 2014), slightly higher rates of cyclic electron transport (CET; Yoshida et al., 2011b), and slightly increased susceptibility to photoinhibition after a high light treatment (Florez-Sarasa et al., 2011). Generally, these studies concluded that aox1a plants exhibit a biochemical limitation of photosynthesis, in line with the hypothesis that AOX serves as a sink for excess photogenerated reducing power, with the reductant likely reaching the mitochondrion via the malate valve (Noguchi and Yoshida, 2008; Taniguchi and Miyake, 2012). Similar to these Arabidopsis studies, we recently reported that well-watered N. tabacum AOX knockdowns grown at moderate irradiance display a slight reduced rate of photosynthesis (approximately 10%–15%) when measured at high irradiance. However, we established that the lower photosynthetic rate was the result of a stomatal rather than biochemical limitation of photosynthesis, and provided evidence that this stomatal limitation resulted from disrupted nitric oxide homeostasis within the guard cells of AOX knockdown plants (Cvetkovska et al., 2014).Drought is a common abiotic stress that can substantially curtail photosynthesis because stomatal closure, meant to conserve water, also restricts CO2 availability to the Calvin cycle. Besides this well established stomatal limitation of photosynthesis, there may also be water deficit-sensitive biochemical components that contribute to the reduction of photosynthesis during drought. However, the nature of this biochemical limitation and the degree to which it contributes to the curtailment of photosynthesis during drought remain areas of active debate (Flexas et al., 2004; Lawlor and Tezara, 2009; Pinheiro and Chaves, 2011). Additional factors, such as patchy stomatal closure (Sharkey and Seemann, 1989; Gunasekera and Berkowitz, 1992) or changes in the conductance to CO2 of mesophyll cells (Perez-Martin et al., 2009), can further complicate analyses of photosynthesis during drought.Metabolism can experience energy imbalances, when there is a mismatch between rates of synthesis and rates of utilization of ATP and/or NADPH, and the importance of mechanisms to minimize such imbalances has been emphasized (Cruz et al., 2005; Kramer and Evans, 2011; Vanlerberghe, 2013). For example, such imbalances may occur in the chloroplast when the use of ATP and NADPH by the Calvin cycle does not keep pace with the harvesting of light energy (Hüner et al., 2012). This can result in excess excitation energy that can damage photosynthetic components, perhaps through the generation of ROS (Asada, 2006; Noctor et al., 2014). Such a scenario has been hypothesized to underlie the development of the biochemical limitations of photosynthesis reported during drought (Lawlor and Tezara, 2009).In this study, we find that N. tabacum AOX knockdowns show a compromised rate of mitochondrial respiration in the light during moderate drought. This corresponds with a strong nonstomatal limitation of photosynthesis in these plants relative to the wild type, and we describe a biochemical basis for this photosynthetic limitation. The results indicate that AOX is a necessary electron sink to support photosynthesis during drought, a condition when the major photosynthetic electron sink, the Calvin cycle, is becoming limited by CO2 availability.  相似文献   

12.
Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.Plants are of vital significance as a source of food (Grusak and DellaPenna, 1999; Rogalski and Carrer, 2011), feed (Lu et al., 2011), energy (Tilman et al., 2006; Parmar et al., 2011), and feedstocks for the chemical industry (Metzger and Bornscheuer, 2006; Kinghorn et al., 2011). Given the close connection between plant metabolism and the usability of plant products, there is a growing interest in understanding and predicting the behavior and regulation of plant metabolic processes. In order to increase crop quality and yield, there is a need for methods guiding the rational redesign of the plant metabolic network (Schwender, 2009).Mathematical modeling of plant metabolism offers new approaches to understand, predict, and modify complex plant metabolic processes. In plant research, the issue of metabolic modeling is constantly gaining attention, and different modeling approaches applied to plant metabolism exist, ranging from highly detailed quantitative to less complex qualitative approaches (for review, see Giersch, 2000; Morgan and Rhodes, 2002; Poolman et al., 2004; Rios-Estepa and Lange, 2007).A widely used modeling approach is flux balance analysis (FBA), which allows the prediction of metabolic capabilities and steady-state fluxes under different environmental and genetic backgrounds using (non)linear optimization (Orth et al., 2010). Assuming steady-state conditions, FBA has the advantage of not requiring the knowledge of kinetic parameters and, therefore, can be applied to model detailed, large-scale systems. In recent years, the FBA approach has been applied to several different plant species, such as maize (Zea mays; Dal’Molin et al., 2010; Saha et al., 2011), barley (Hordeum vulgare; Grafahrend-Belau et al., 2009b; Melkus et al., 2011; Rolletschek et al., 2011), rice (Oryza sativa; Lakshmanan et al., 2013), Arabidopsis (Arabidopsis thaliana; Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010; Radrich et al., 2010; Williams et al., 2010; Mintz-Oron et al., 2012; Cheung et al., 2013), and rapeseed (Brassica napus; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011), as well as algae (Boyle and Morgan, 2009; Cogne et al., 2011; Dal’Molin et al., 2011) and photoautotrophic bacteria (Knoop et al., 2010; Montagud et al., 2010; Boyle and Morgan, 2011). These models have been used to study different aspects of metabolism, including the prediction of optimal metabolic yields and energy efficiencies (Dal’Molin et al., 2010; Boyle and Morgan, 2011), changes in flux under different environmental and genetic backgrounds (Grafahrend-Belau et al., 2009b; Dal’Molin et al., 2010; Melkus et al., 2011), and nonintuitive metabolic pathways that merit subsequent experimental investigations (Poolman et al., 2009; Knoop et al., 2010; Rolletschek et al., 2011). Although FBA of plant metabolic models was shown to be capable of reproducing experimentally determined flux distributions (Williams et al., 2010; Hay and Schwender, 2011b) and generating new insights into metabolic behavior, capacities, and efficiencies (Sweetlove and Ratcliffe, 2011), challenges remain to advance the utility and predictive power of the models.Given that many plant metabolic functions are based on interactions between different subcellular compartments, cell types, tissues, and organs, the reconstruction of organ-specific models and the integration of these models into interacting multiorgan and/or whole-plant models is a prerequisite to get insight into complex plant metabolic processes organized on a whole-plant scale (e.g. source-sink interactions). Almost all FBA models of plant metabolism are restricted to one cell type (Boyle and Morgan, 2009; Knoop et al., 2010; Montagud et al., 2010; Cogne et al., 2011; Dal’Molin et al., 2011), one tissue or one organ (Grafahrend-Belau et al., 2009b; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011; Mintz-Oron et al., 2012), and only one model exists taking into account the interaction between two cell types by specifying the interaction between mesophyll and bundle sheath cells in C4 photosynthesis (Dal’Molin et al., 2010). So far, no model representing metabolism at the whole-plant scale exists.Considering whole-plant metabolism raises the problem of taking into account temporal and environmental changes in metabolism during plant development and growth. Although classical static FBA is unable to predict the dynamics of metabolic processes, as the network analysis is based on steady-state solutions, time-dependent processes can be taken into account by extending the classical static FBA to a dynamic flux balance analysis (dFBA), as proposed by Mahadevan et al. (2002). The static (SOA) and dynamic optimization approaches introduced in this work provide a framework for analyzing the transience of metabolism by integrating kinetic expressions to dynamically constrain exchange fluxes. Due to the requirement of knowing or estimating a large number of kinetic parameters, so far dFBA has only been applied to a plant metabolic model once, to study the photosynthetic metabolism in the chloroplasts of C3 plants by a simplified model of five biochemical reactions (Luo et al., 2009). Integrating a dynamic model into a static FBA model is an alternative approach to perform dFBA.In this study, a multiscale metabolic modeling (MMM) approach was applied with the aim of achieving a spatiotemporal resolution of cereal crop plant metabolism. To provide a framework for the in silico analysis of the metabolic dynamics of barley on a whole-plant scale, the MMM approach integrates a static multiorgan FBA model and a dynamic whole-plant multiscale functional plant model (FPM) to perform dFBA. The performance of the novel whole-plant MMM approach was tested by studying source-sink interactions during the seed developmental phase of barley plants.  相似文献   

13.
14.
15.
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.The phytohormone abscisic acid (ABA), which is synthesized in response to abiotic stresses, plays a key role in the drought hardiness of plants. Reducing transpirational water loss through stomatal pores is a major ABA response (Schroeder et al., 2001). ABA promotes the closure of open stomata and inhibits the opening of closed stomata. These effects are not simply the reverse of one another (Allen et al., 1999; Wang et al., 2001; Mishra et al., 2006).A class of receptors of ABA was identified (Ma et al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). The sensitivity of stomata to ABA was strongly decreased in quadruple and sextuple mutants of the ABA receptor genes PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (PYR/PYL/RCAR; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012). The PYR/PYL/RCAR receptors are involved in the early ABA signaling events, in which a sequence of interactions of the receptors with PROTEIN PHOSPHATASE 2Cs (PP2Cs) and subfamily 2 SNF1-RELATED PROTEIN KINASES (SnRK2s) leads to the activation of downstream ABA signaling targets in guard cells (Cutler et al., 2010; Kim et al., 2010; Weiner et al., 2010). Studies of Commelina communis and Vicia faba suggested that the ABA receptors involved in stomatal opening are not the same as the ABA receptors involved in stomatal closure (Allan et al., 1994; Anderson et al., 1994; Assmann, 1994; Schwartz et al., 1994). The roles of PYR/PYL/RCAR in either stomatal opening or closure remained to be elucidated.Blue light induces stomatal opening through the activation of plasma membrane H+-ATPase in guard cells that generates an inside-negative electrochemical gradient across the plasma membrane and drives K+ uptake through voltage-dependent inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Blatt, 1987; Schroeder et al., 1987; Thiel et al., 1992). Phosphorylation of the penultimate Thr of the plasma membrane H+-ATPase is a prerequisite for blue light-induced activation of the H+-ATPase (Kinoshita and Shimazaki, 1999, 2002). ABA inhibits H+-ATPase activity through dephosphorylation of the penultimate Thr in the C terminus of the H+-ATPase in guard cells, resulting in prevention of the opening (Goh et al., 1996; Zhang et al., 2004; Hayashi et al., 2011). Inward-rectifying K+ currents (IKin) of guard cells are negatively regulated by ABA in addition to through the decline of the H+ pump-driven membrane potential difference (Schroeder and Hagiwara, 1989; Blatt, 1990; McAinsh et al., 1990; Schwartz et al., 1994; Grabov and Blatt, 1999; Saito et al., 2008). This down-regulation of ion transporters by ABA is essential for the inhibition of stomatal opening.A series of second messengers has been shown to mediate ABA-induced stomatal closure. Reactive oxygen species (ROS) produced by NADPH oxidases play a crucial role in ABA signaling in guard cells (Pei et al., 2000; Zhang et al., 2001; Kwak et al., 2003; Sirichandra et al., 2009; Jannat et al., 2011). Nitric oxide (NO) is an essential signaling component in ABA-induced stomatal closure (Desikan et al., 2002; Guo et al., 2003; Garcia-Mata and Lamattina, 2007; Neill et al., 2008). Alkalization of cytosolic pH in guard cells is postulated to mediate ABA-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) and Pisum sativum and Paphiopedilum species (Irving et al., 1992; Gehring et al., 1997; Grabov and Blatt, 1997; Suhita et al., 2004; Gonugunta et al., 2008). These second messengers transduce environmental signals to ion channels and ion transporters that create the driving force for stomatal movements (Ward et al., 1995; MacRobbie, 1998; Garcia-Mata et al., 2003).In this study, we examined the mobilization of second messengers, the inactivation of IKin, and the suppression of H+-ATPase phosphorylation evoked by ABA in Arabidopsis mutants to clarify the downstream signaling events of ABA signaling in guard cells. The mutants included a quadruple mutant of PYR/PYL/RCARs, pyr1/pyl1/pyl2/pyl4, and a mutant of a SnRK2 kinase, srk2e.  相似文献   

16.
In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.Plant cells contain sophisticated endomembrane compartments, including the endoplasmic reticulum, the Golgi, the trans-Golgi network (TGN)/early endosome (EE), the prevacuolar compartments/multivesicular bodies (PVC/MVB), various types of vesicles, and the plasma membrane (PM; Ebine and Ueda, 2009; Richter et al., 2009). Intracellular protein sorting between the various locations in the endomembrane system occurs in both secretory and endocytic routes (Richter et al., 2009; De Marcos Lousa et al., 2012). Vesicles in the secretory route start at the endoplasmic reticulum, passing through the Golgi before reaching the TGN/EE, while vesicles in the endocytic route start from the PM before reaching the TGN/EE (Dhonukshe et al., 2007; Viotti et al., 2010). The TGN/EE in Arabidopsis (Arabidopsis thaliana) is an independent and highly dynamic organelle transiently associated with the Golgi (Dettmer et al., 2006; Lam et al., 2007; Viotti et al., 2010), distinct from the animal TGN. Once reaching the TGN/EE, proteins delivered by their vesicle carriers are subject to further sorting, being incorporated either into vesicles that pass through the PVC/MVB before reaching the vacuole for degradation or into vesicles that enter the secretory pathway for delivery to the PM (Ebine and Ueda, 2009; Richter et al., 2009). Therefore, the TGN/EE is a critical sorting compartment that lies at the intersection of the secretory and endocytic routes.Fine-tuned control of intracellular protein sorting at the TGN/EE is essential for plant development (Geldner et al., 2003; Dhonukshe et al., 2007, 2008; Richter et al., 2007; Kitakura et al., 2011; Wang et al., 2013). An auxin gradient is crucial for pattern formation in plants, whose dynamic maintenance requires the polar localization of auxin efflux carrier PINs through endocytic recycling (Geldner et al., 2003; Blilou et al., 2005; Paciorek et al., 2005; Abas et al., 2006; Jaillais et al., 2006; Dhonukshe et al., 2007; Kleine-Vehn et al., 2008). Receptor-like kinases (RLKs) have also been recognized as major cargos undergoing endocytic trafficking, which are either recycled back to the PM or sent for vacuolar degradation (Geldner and Robatzek, 2008; Irani and Russinova, 2009). RLKs are involved in most if not all developmental processes of plants (De Smet et al., 2009).Intracellular protein sorting relies on sorting signals within cargo proteins and on the molecular machinery that recognizes sorting signals (Boehm and Bonifacino, 2001; Robinson, 2004; Dhonukshe et al., 2007). Adaptor proteins (AP) play a key role (Boehm and Bonifacino, 2001; Robinson, 2004) in the recognition of sorting signals. APs are heterotetrameric protein complexes composed of two large subunits (β and γ/α/δ/ε), a small subunit (σ), and a medium subunit (µ) that is crucial for cargo selection (Boehm and Bonifacino, 2001). APs associate with the cytoplasmic side of secretory and endocytic vesicles, recruiting coat proteins and recognizing sorting signals within cargo proteins for their incorporation into vesicle carriers (Boehm and Bonifacino, 2001). Five APs have been identified so far, classified by their components, subcellular localization, and function (Boehm and Bonifacino, 2001; Robinson, 2004; Hirst et al., 2011). Of the five APs, AP-1 associates with the TGN or recycling endosomes (RE) in yeast and mammals (Huang et al., 2001; Robinson, 2004), mediating the sorting of cargo proteins to compartments of the endosomal-lysosomal system or to the basolateral PM of polarized epithelial cells (Gonzalez and Rodriguez-Boulan, 2009). Knockouts of AP-1 components in multicellular organisms resulted in embryonic lethality (Boehm and Bonifacino, 2001; Robinson, 2004).We show here that the recently identified Arabidopsis µ1 adaptin AP1M2 (Park et al., 2013; Teh et al., 2013) is a key component in the cellular machinery mediating intracellular protein sorting at the TGN/EE. AP1M2 was previously named HAPLESS13 (HAP13), whose mutant allele hap13 showed male gametophytic lethality (Johnson et al., 2004). In recent quests for AP-1 in plants, HAP13/AP1M2 was confirmed as the Arabidopsis µ1 adaptin based on its interaction with other components of the AP-1 complex as well as its localization at the TGN (Park et al., 2013; Teh et al., 2013). A novel mutant allele of HAP13/AP1M2, ap1m2-1, was found to be defective in the intracellular distribution of KNOLLE, leading to defective cytokinesis (Park et al., 2013; Teh et al., 2013). However, it was not clear whether HAP13/AP1M2 mediated other cellular activities and their developmental consequences. Using the same mutant allele, we found that functional loss of HAP13 (hap13-1/ap1m2-1) resulted in a full spectrum of growth defects, suggestive of compromised auxin signaling and of defective RLK signaling. Cell morphogenesis was also disturbed in hap13-1. Importantly, hap13-1 was insensitive to brefeldin A (BFA) washout, indicative of defects in guanine nucleotide exchange factors for ADP-ribosylation factor (ArfGEF)-mediated post-Golgi trafficking. Furthermore, HAP13/AP1M2 showed evolutionarily conserved function during vacuolar fusion, providing additional support to its identity as a µ1 adaptin. These results demonstrate the importance of the Arabidopsis µ1 adaptin for intracellular protein sorting centered on the TGN/EE.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号