首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Getting to the heart of regeneration in zebrafish   总被引:1,自引:0,他引:1  
A scientific and clinical prerogative of the 21st century is to stimulate the regenerative ability of the human heart. While the mammalian heart shows little or no natural regeneration in response to injury, certain non-mammalian vertebrates possess an elevated capacity for cardiac regeneration. Adult zebrafish restore ventricular muscle removed by surgical resection, events that involve little or no scarring. Recent studies have begun to reveal cellular and molecular mechanisms of this regenerative process that have exciting implications for human cardiac biology and disease.  相似文献   

2.
The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than its damage. Here, we characterize the cellular response and regenerative capacity of the zebrafish heart after cryoinjury, an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). Localized damage was induced in 25% of the ventricle by cryocauterization (CC). During the first 24 hours post-injury, CC leads to cardiomyocyte death within the injured area and the near coronary vasculature. Cell death is followed by a rapid proliferative response in endocardium, epicardium and myocardium. During the first 3 weeks post-injury cell debris was cleared and the injured area replaced by a massive scar. The fibrotic tissue was subsequently degraded and replaced by cardiac tissue. Although animals survived CC, their hearts showed nonhomogeneous ventricular contraction and had a thickened ventricular wall, suggesting that regeneration is associated with processes resembling mammalian ventricular remodeling after acute MI. Our results provide the first evidence that, like mammalian hearts, teleost hearts undergo massive fibrosis after cardiac damage. Unlike mammals, however, the fish heart can progressively eliminate the scar and regenerate the lost myocardium, indicating that scar formation is compatible with myocardial regeneration and the existence of endogenous mechanisms of scar regression. This finding suggests that CC-induced damage in zebrafish could provide a valuable model for the study of the mechanisms of scar removal post-MI.  相似文献   

3.
4.
In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast, zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in response to necrotic cell death.  相似文献   

5.

Aims

While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters.

Methods and Results

Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored.

Conclusion

Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.  相似文献   

6.
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative and regenerative processes is achieved through Smad3-dependent TGFβ signaling. The type I receptor alk5b (tgfbr1b) is expressed in both fibrotic and cardiac cells of the injured heart. TGFβ ligands are locally induced following cryoinjury and activate the signaling pathway both in the infarct area and in cardiomyocytes in the vicinity of the trauma zone. Inhibition of the relevant type I receptors with the specific chemical inhibitor SB431542 qualitatively altered the infarct tissue and completely abolished heart regeneration. We show that transient scar formation is an essential step to maintain robustness of the damaged ventricular wall prior to cardiomyocyte replacement. Taking advantage of the reversible action of the inhibitor, we dissected the multifunctional role of TGFβ signaling into three crucial processes: collagen-rich scar deposition, Tenascin C-associated tissue remodeling at the infarct-myocardium interface, and cardiomyocyte proliferation. Thus, TGFβ signaling orchestrates the beneficial interplay between scar-based repair and cardiomyocyte-based regeneration to achieve complete heart regeneration.  相似文献   

7.
Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage.  相似文献   

8.

Objectives

To better understand the molecular mechanisms of regeneration and explore the potential signalling pathways as therapeutic targets for heart attacks.

Results

After treatment with the MEK inhibitor AZD6244 upon cardiac injury, the core members in MAPK/ERK signalling—mek and erk—demonstrate elevated expression, and these proteins are deposited at the injury site in zebrafish. pERK is also induced in non-cardiomyocytes near the injury site. Furthermore, the induced expression of a dominant-negative form of MEK1 inhibits zebrafish cardiac regeneration, characterized by increased cardiac fibrosis (a hallmark of regenerative failure), reduced or delayed production of regenerative myocardium, and migration of FLI1+ endothelial cells, without direct inhibition of cardiomyocyte proliferation.

Conclusion

Appropriate activation of MAPK/ERK signalling is essential for zebrafish cardiac regeneration.
  相似文献   

9.
Psychological stress is one of the factors associated with human cardiovascular disease. Here, we demonstrate that acute perceived stress impairs the natural capacity of heart regeneration in zebrafish. Beside physical and chemical disturbances, intermittent crowding triggered an increase in cortisol secretion and blocked the replacement of fibrotic tissue with new myocardium. Pharmacological simulation of stress by pulse treatment with dexamethasone/adrenaline reproduced the regeneration failure, while inhibition of the stress response with anxiolytic drugs partially rescued the regenerative process. Impaired heart regeneration in stressed animals was associated with a reduced cardiomyocyte proliferation and with the downregulation of several genes, including igfbp1b, a modulator of IGF signalling. Notably, daily stress induced a decrease in Igf1r phosphorylation. As cardiomyocyte proliferation was decreased in response to IGF-1 receptor inhibition, we propose that the stress-induced cardiac regenerative failure is partially caused by the attenuation of IGF signalling. These findings indicate that the natural regenerative ability of the zebrafish heart is vulnerable to the systemic paracrine stress response.  相似文献   

10.
While the adult human heart has very limited regenerative potential, the adult zebrafish heart can fully regenerate after 20% ventricular resection. Although previous reports suggest that developmental signaling pathways such as FGF and PDGF are reused in adult heart regeneration, the underlying intracellular mechanisms remain largely unknown. Here we show that H2O2 acts as a novel epicardial and myocardial signal to prime the heart for regeneration in adult zebrafish. Live imaging of intact hearts revealed highly localized H2O2 (∼30 μM) production in the epicardium and adjacent compact myocardium at the resection site. Decreasing H2O2 formation with the Duox inhibitors diphenyleneiodonium (DPI) or apocynin, or scavenging H2O2 by catalase overexpression markedly impaired cardiac regeneration while exogenous H2O2 rescued the inhibitory effects of DPI on cardiac regeneration, indicating that H2O2 is an essential and sufficient signal in this process. Mechanistically, elevated H2O2 destabilized the redox-sensitive phosphatase Dusp6 and hence increased the phosphorylation of Erk1/2. The Dusp6 inhibitor BCI achieved similar pro-regenerative effects while transgenic overexpression of dusp6 impaired cardiac regeneration. H2O2 plays a dual role in recruiting immune cells and promoting heart regeneration through two relatively independent pathways. We conclude that H2O2 potentially generated from Duox/Nox2 promotes heart regeneration in zebrafish by unleashing MAP kinase signaling through a derepression mechanism involving Dusp6.  相似文献   

11.
Although cardiac stem cells (CSCs) and tissue engineering are very promising for cardiac regenerative medicine, studies with model organisms for heart regeneration will provide alternative therapeutic targets and opportunities. Here, we present a review on heart regeneration, with a particular focus on the most recent work in mouse and zebrafish. We attempt to summarize the recent progresses and bottlenecks of CSCs and tissue engineering for heart regeneration; and emphasize what we have learned from mouse and zebrafish regenerative models on discovering crucial genetic and epigenetic factors for stimulating heart regeneration; and speculate the potential application of these regenerative factors for heart failure. A brief perspective highlights several important and promising research directions in this exciting field. Birth Defects Research (Part C) 99:160–169, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine,one of the most urgent clinical needs for heart failure.Here we present a review on zebrafish heart development and regeneration,with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart,as well as cellular and molecular programs in adult zebrafish heart regeneration.We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration.A brief perspective highlights several important and promising research areas in this exciting field.  相似文献   

13.
14.
Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.  相似文献   

15.
刘新星  张雨田  张博 《遗传》2013,35(4):529-532
斑马鱼心脏再生是近年来心血管再生医学研究的新热点之一, 也是以斑马鱼为模式进行脊椎动物遗传发育研究的一个新的重要方向。通过了解斑马鱼成体心脏再生的过程和研究其分子和细胞机制有可能为诱导哺乳动物成体心脏再生、治疗心肌梗塞等人类心脏疾病提供理论依据。文章主要介绍通过简单的手术切除成体斑马鱼约20%心室造成成体心脏损伤、诱导心脏再生的操作方法与经验。其基本流程主要包括麻醉成鱼、在体视镜下用尖镊撕开斑马鱼心脏腹面的皮肤和心包膜以暴露心脏、用剪刀切除心尖区域的部分心室。这种方法的手术成功率可达90%以上, 操作简便且重复性好, 是目前研究斑马鱼成体心脏损伤-再生的最常用的方法。  相似文献   

16.
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.  相似文献   

17.
Myocardial injury, such as myocardial infarction (MI), can lead to drastic heart damage. Zebrafish have the extraordinary ability to regenerate their heart after a severe injury. Upon ventricle resection, fibrin clots seal the wound and serve as a matrix for recruiting myeloid-derived phagocytes. Accumulated neutrophils and macrophages not only reduce the risk of infection but also secrete cytokines and growth factors to promote tissue repair. However, the underlying cellular and molecular mechanisms for how immune responses are regulated during the early stages of cardiac repair are still unclear. We investigated the role and programming of early immune responses during zebrafish heart regeneration. We found that zebrafish treated with an anti-inflammatory glucocorticoid had significantly reduced heart regenerative capacities, consistent with findings in other higher vertebrates. Moreover, inhibiting the inflammatory response led to excessive collagen deposition. A microarray approach was used to assess the differential expression profiles between zebrafish hearts with normal or impaired healing. Combining cytokine profiling and immune-staining, our data revealed that impaired heart regeneration could be due to reduced phagocyte recruitment, leading to diminished angiogenesis and cell proliferation post-cardiac injury. Despite their robust regenerative ability, our study revealed that glucocorticoid treatment could effectively hinder cardiac repair in adult zebrafish by interfering with the inflammatory response. Our findings may help to clarify the initiation of cardiac repair, which could be used to develop a therapeutic intervention that may enhance cardiac repair in humans to compensate for the loss of cardiomyocytes after an MI.  相似文献   

18.
The regulation of cardiomyocyte proliferation is important for heart development and regeneration. The proliferation patterns of cardiomyocytes are closely related to heart morphogenesis, size, and functions. The proliferation levels are high during early embryogenesis; however, mammalian cardiomyocytes exit the cell cycle irreversibly soon after birth. The cell cycle exit inhibits cardiac regeneration in mammals. On the other hand, cardiomyocytes of adult zebrafish and probably newts can proliferate after cardiac injury, and the hearts can be regenerated. Therefore, the ability to reproliferate determines regenerative ability. As in other cells, the relationship between proliferation and differentiation is very interesting, and is closely related to cardiac development, regeneration and homeostasis. In this review, these topics are discussed.  相似文献   

19.
We describe here a protocol for culturing epicardial cells from adult zebrafish hearts, which have a unique regenerative capacity after injury. Briefly, zebrafish hearts first undergo ventricular amputation or sham operation. Next, the hearts are excised and explanted onto fibrin gels prepared in advance in a multiwell tissue culture plate. The procedure allows the epicardial cells to outgrow from the ventricle onto a fibrin matrix in vitro. This protocol differs from those used in other organisms by using a fibrin gel to mimic blood clots that normally form after injury and that are essential for proper cell migration. The culture procedure can be accomplished within 5 h; epicardial cells can be obtained within 24-48 h and can be maintained in culture for 5-6 d. This protocol can be used to investigate the mechanisms underlying epicardial cell migration, proliferation and epithelial-to-mesenchymal transition during heart regeneration, homeostatic cardiac growth or other physiological processes.  相似文献   

20.
Spontaneous Ca2+ release (SCR) can cause triggered activity and initiate arrhythmias. Intrinsic transmural heterogeneities in Ca2+ handling and their propensity to disease remodeling may differentially modulate SCR throughout the left ventricular (LV) wall and cause transmural differences in arrhythmia susceptibility. Here, we aimed to dissect the effect of cardiac injury on SCR in different regions in the intact LV myocardium using cryoinjury on rat living myocardial slices (LMS). We studied SCR under proarrhythmic conditions using a fluorescent Ca2+ indicator and high-resolution imaging in LMS from the subendocardium (ENDO) and subepicardium (EPI). Cryoinjury caused structural remodeling, with loss in T-tubule density and an increased time of Ca2+ transients to peak after injury. In ENDO LMS, the Ca2+ transient amplitude and decay phase were reduced, while these were not affected in EPI LMS after cryoinjury. The frequency of spontaneous whole-slice contractions increased in ENDO LMS without affecting EPI LMS after injury. Cryoinjury caused an increase in foci that generates SCR in both ENDO and EPI LMS. In ENDO LMS, SCRs were more closely distributed and had reduced latencies after cryoinjury, whereas this was not affected in EPI LMS. Inhibition of CaMKII reduced the number, distribution, and latencies of SCR, as well as whole-slice contractions in ENDO LMS, but not in EPI LMS after cryoinjury. Furthermore, CaMKII inhibition did not affect the excitation–contraction coupling in cryoinjured ENDO or EPI LMS. In conclusion, we demonstrate increased arrhythmogenic susceptibility in the injured ENDO. Our findings show involvement of CaMKII and highlight the need for region-specific targeting in cardiac therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号