首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.  相似文献   

3.
Ca(2+) acts as a fundamental signal transduction element in inner ear, delivering information about sound, acceleration and gravity through a small number of mechanotransduction channels in the hair cell stereocilia and voltage activated Ca(2+) channels at the ribbon synapse, where it drives neurotransmission. The mechanotransduction process relies on the endocochlear potential, an electrical potential difference between endolymph and perilymph, the two fluids bathing respectively the apical and basolateral membrane of the cells in the organ of Corti. In mouse models, deafness and lack or reduction of the endocochlear potential correlate with ablation of connexin (Cx) 26 or 30. These Cxs form heteromeric channels assembled in a network of gap junction plaques connecting the supporting and epithelial cells of the organ of Corti presumably for K(+) recycle and transfer of key metabolites, for example, the Ca(2+) -mobilizing second messenger IP(3) . Ca(2+) signaling in these cells could play a crucial role in regulating Cx expression and function. Another district where Ca(2+) signaling alterations link to hearing loss is hair cell apex, where ablation or missense mutations of the PMCA2 Ca(2+) -pump of the stereocilia cause deafness and loss of balance. If less Ca(2+) is exported from the stereocilia, as in the PMCA2 mouse mutants, Ca(2+) concentration in endolymph is expected to fall causing an alteration of the mechanotransduction process. This may provide a clue as to why, in some cases, PMCA2 mutations potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 (Usher syndrome type 1D), a single pass membrane Ca(2+) binding protein that is abundantly expressed in the stereocilia.  相似文献   

4.
The inner ear converts sound waves into hearing signals through the mechanoelectrical transduction (MET) process. Deflection of the stereocilia bundle of hair cells causes the opening of channels that allow the entry of endolymph K+ and Ca2+. Ca2+ that enters is crucial to the hearing process and is exported to the endolymph by the plasma membrane Ca2+ pump (isoform PMCA2w/a): disturbances of the balance between Ca2+ penetration and ejection, e.g. by pump mutations, generate deafness. Hearing loss caused by PMCA defects is frequently exacerbated by mutations in cadherin 23, a single pass stereociliar Ca2+ binding protein that forms the tip links which permit the deflection of the stereocilia bundle and thus the opening of the MET channels. The PMCA2w/a pump ejects Ca2+ to the endolymph even in the absence of the natural activator calmodulin. This satisfies the special Ca2+ homeostasis requirements of the stereocilia/endolymph system. Here we have analyzed a mice and a human previously described pump mutant. The human mutant only exacerbated the deafness produced by a cadherin 23 mutation. The murine mutant overexpressed in model cells displayed an evident defect both in the basal activity of the pump and in the long range ejection of Ca2+, the human mutant instead failed to impair the Ca2+ ejection by the pump.  相似文献   

5.
There are four genes encoding isoforms of the plasma membrane Ca(2+) pump (PMCA). PMCA variability is increased by the presence of two splicing sites. Functional differences between the variants of PMCA have been described, but little is known about the adaptive advantages of this great diversity of pumps. In this paper we studied how the different isoforms respond to a sudden increase in Ca(2+) concentration. We found that different PMCAs are activated by Ca(2+) at different rates, PMCA 3f and 2a being the fastest, and 4b the slowest. The rate of activation by Ca(2+) depends both on the rate of calmodulin binding and the magnitude of the activation by calmodulin. We found that 2a is located in heart and the stereocilia of inner ear hair cells, 3f in skeletal muscle and 4b was identified in Jurkat cells. Both cardiac and skeletal muscle, and stereocilia recover very rapidly after a cytoplasmic Ca(2+)peak, while in Jurkat cells the recovery takes up to a minute. In stereocilia, 2a is the only method for export of Ca(2+), making the analysis of them unusually straightforward. This indicates that these rates of PMCA activation by Ca(2+) are correlated with the speed of Ca(2+) concentration decay after a Ca2 spike in the cells in which these variants of PMCA are expressed. The results suggest that the type of PMCA expressed will correspond with the speed of Ca(2+) signals in the cell.  相似文献   

6.
Hearing relies on the ability of the inner ear to convert sound waves into electrical signals. The main actors in this process are hair cells. Their stereocilia contain a number of specific proteins and a scaffold of actin molecules. They are organized in bundles by tip-link filaments composed of cadherin 23 and protocadherin 15. The bundle is deflected by sound waves leading to the opening of mechano-transduction channels and to the influx of K(+) and Ca(2+) into the stereocilia. Cadherin 23 and the plasma membrane calcium ATPase isoform 2 (PMCA2) are defective in human and murine cases of deafness. While the involvement of cadherin 23 in deafness/hearing could be expected due to its structural role in the tip-links, that of PMCA2 has been discovered only recently. This review will summarize the structural and functional characteristics of hair cells, focusing on the proteins whose mutations may lead to a deafness phenotype.  相似文献   

7.
Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2 (BAIAP2L2), a membrane-binding protein required for the maintenance of mechanotransduction in hair cells, is selectively retained at the tips of transducing stereocilia. BAIAP2L2 trafficked to stereocilia tips in the absence of EPS8, but EPS8 increased the efficiency of localization. A tripartite complex of BAIAP2L2, EPS8, and MYO15A formed efficiently in vitro, and these three proteins robustly targeted to filopodia tips when coexpressed in cultured cells. Mice lacking functional transduction channels no longer concentrated BAIAP2L2 at row 2 stereocilia tips, a result that was phenocopied by blocking channels with tubocurarine in cochlear explants. Transduction channels permit Ca2+ entry into stereocilia, and we found that membrane localization of BAIAP2L2 was enhanced in the presence of Ca2+. Finally, reduction of intracellular Ca2+ in hair cells using BAPTA-AM led to a loss of BAIAP2L2 at stereocilia tips. Taken together, our results show that a MYO15A-EPS8 complex transports BAIAP2L2 to stereocilia tips, and Ca2+ entry through open channels at row 2 tips retains BAIAP2L2 there.  相似文献   

8.
The “w” splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amount of the pump in the apical membrane of these epithelial cells. We generated a stable MDCK cell line expressing non-tagged, full-length PMCA2w/b to further study the localization and function of this protein. Here we demonstrate that PMCA2w/b is highly active and shows enhanced apical localization in terminally polarized MDCK cells grown on semi-permeable filters. Reversible surface biotinylation combined with confocal microscopy of fully polarized cells show that the pump is stabilized in the apical membrane via the apical membrane cytoskeleton with the help of endogenous NHERF2 and ezrin. Disruption of the actin cytoskeleton removed the pump from the apical actin patches without provoking its internalization. Our data suggest that full polarization is a prerequisite for proper positioning of the PMCA2w variants in the apical membrane domain of polarized cells.  相似文献   

9.
Ultrasound-mediated gene transfer into neuronal cells   总被引:6,自引:0,他引:6  
A new field of gene transfer is emerging as a simple, effective means to drive the expression foreign genes in cells: ultrasound-mediated gene transfer or sonoporation. We report here that sonoporation is an effective means of gene transfer for cultured neurons, a cell type that has been difficult to transfect. Neuronal cell types that are effectively sonoporated include chick retinal neurons, chick dorsal forebrain, chick optic tectum, PC12 cells, rat cerebellar neurons and mouse hippocampal neurons. Depending on the type of cell and conditions of sonoporation the transfection efficacy was as high as 20%. Sonoporation of plasmid DNA was effective for cells adherent to a substrate and for free-floating cells that were freshly dissociated. In the free-floating preparations, between 60 and 95% of the cells that were transfected were neuronal, as much as 90% higher than that observed for other methods of gene transfer including adenovirus and lipid-based transfection methods. We conclude that sonoporation is a simple, effective and inexpensive means by which to preferentially transfect DNA into neuronal cells.  相似文献   

10.
We have developed an improved procedure for isolating and transfecting a chromaffin cell-enriched population of primary cells from adult mouse adrenal glands. Significantly, the parameters of a novel electroporation transfection technique were optimized to achieve an average transfection efficiency of 45 % on the small number of cells derived from the mouse glands. Such transfection efficiency was previously unachievable with the electroporation protocols conventionally used with bovine chromaffin cells, even with use of large cell numbers. Our small scale technique now makes feasible the use of genetically homogenous inbred mouse models for investigations on the exocytotic pathway without the time, expense, and cellular changes associated with viral approaches. High fidelity co-expression of multiple plasmids in individual cells is a further advantage of the procedure. To assess whether the biophysical characteristics of mouse adrenal chromaffin cells were altered by this process, we examined structural integrity using immunocytochemistry and functional response to stimuli using calcium imaging, amperometry, and whole-cell capacitance and current clamp recordings. We conclude these parameters are minimally affected. Finally, we demonstrate that high transfection efficiency makes possible the use of primary mouse adrenal chromaffin cells, rather than a cell line, in human growth hormone secretion assays for high throughput evaluation of secretion.  相似文献   

11.
Inner ear hair cells exhibit many pathologies following exposure to intense sound, and the hair bundle is a major site of damage. This paper measures in vitro hair bundle motion on chick cochlear hair cells after intense in vitro and in vivo stimulation to explore the nature of hair bundle injury. Hair bundle stiffness, as well as relative and asymmetric motion of individual stereocilia, is controlled largely by the extracellular tip links, and a change in hair bundle motion was used to assess tip-link destruction following overstimulation. Intense in vitro stimulation caused a loss in stiffness that fully recovered within 10 min post-exposure. Relative and asymmetric stereocilia motion, however, were unchanged following the exposure, implying that tip links remained intact while the core or rootlet of the stereocilia were damaged and subsequently repaired. Intense and prolonged in vivo sound exposures produced stereocilia movements, measured in vitro, that were indicative of damage to stereocilia and tip links. Finally, the relative susceptibility of hair bundles to overstimulation was addressed by comparing stiffness loss with morphological features in the hair bundles. The loss of stiffness significantly increased as the amount of curvature in the hair bundle contour increased.  相似文献   

12.
13.
Myogenic cell lines have been used widely in the study of myogenic differentiation, muscle regeneration and homeostasis, but, myoblasts and myotubes are difficult to transfect using conventional techniques. We have used liposome-based transfection method to introduce a green fluorescence protein (GFP)-expressing plasmid into Matrigel basement membrane matrix-coated C2C12 mouse myoblast cells. Myoblasts adhered and proliferated more rapidly on a Matrigel; thus, a dramatic increase in transfection efficiency can be obtained compared to Matrigel-untreated cells. Transfection efficiency was determined by counting fluorescent and total cells from six random fields for each condition. This protocol results in efficient (up to 60–70%) transfection of C2C12 myoblasts, high levels of GFP expression and low rate of cell death (10%). This technique is rapid, reliable, uses a lipid-based transfection reagent, and yields high transfection rates in a previously hard-to-transfect cell type.  相似文献   

14.
Ptprq is a receptor‐like inositol lipid phosphatase associated with the shaft connectors of hair bundles. Three lines of evidence suggest Ptprq is a chondroitin sulfate proteoglycan: (1) chondroitinase ABC treatment causes a loss of the ruthenium‐red reactive, electron‐dense particles associated with shaft connectors, (2) chondroitinase ABC causes an increase in the electrophoretic mobility of Ptprq, and (3) hair bundles in the developing inner ear of wild‐type mice, but not those of Ptprq?/? mice, react with monoclonal antibody (mAb) 473‐HD, an IgM that recognizes the dermatan‐sulfate‐dependent epitope DSD1. Two lines of evidence indicate that there may be multiple isoforms of Ptprq expressed in hair bundles. First, although Ptprq is expressed throughout the lifetime of most hair cells, hair bundles in the mouse and chick inner ear only express the DSD1 epitope transiently during development. Second, mAb H10, a novel mAb that recognizes an epitope common to several avian inner‐ear proteins including Ptprq, only stains mature hair bundles in the extrastriolar regions of the vestibular maculae. MAb H10 does not stain mature hair bundles in the striolar regions of the maculae or in the basilar papilla, nor does it stain immature hair bundles in any organ. Three distinct, developmentally regulated isoforms of Ptprq may therefore be expressed on hair bundles of the chick inner ear. Hair bundles in the mature chick ear that do not express the H10 epitope have longer shaft connectors than those that do, indicating the presence or absence of the H10 epitope on Ptprq may modulate the spacing of stereocilia. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 129‐141, 2011  相似文献   

15.
The spontaneous mutant, Wriggle Mouse Sagami (wri), is thought to be a model of hereditary hearing losses in humans. Here we report that the plasma membrane Ca(2+)-ATPase type 2 (PMCA2) gene is mutated in the wri mouse. A G-to-A transition was detected in wri, changing Glu-to-Lys within a conserved transmembrane domain. Mutation of PMCA2 was previously reported in deafwaddler (dfw) mutants; however, the sites of the wri and dfw mutations differ. Immunohistochemical analysis demonstrated that PMCA2 labeling in stereocilia of the cochlea was absent in the wri mutant, suggesting that PMCA2 is crucially involved in the physiology of the auditory system.  相似文献   

16.
Plasma membrane Ca(2+)-ATPases (PMCAs) are involved in local Ca(2+) signaling and in the spatial control of Ca(2+) extrusion, but how different PMCA isoforms are targeted to specific membrane domains is unknown. In polarized MDCK epithelial cells, a green fluorescent protein-tagged PMCA4b construct was targeted to the basolateral membrane, whereas a green fluorescent protein-tagged PMCA2b construct was localized to both the apical and basolateral domain. The PDZ protein-binding COOH-terminal tail of PMCA2b was not responsible for its apical membrane localization, as a chimeric pump made of an NH(2)-terminal portion from PMCA4 and a COOH-terminal tail from PMCA2b was targeted to the basolateral domain. Deletion of the last six residues of the COOH terminus of either PMCA2b or PMCA4b did not alter their membrane targeting, suggesting that PDZ protein interactions are not essential for proper membrane localization of the pumps. Instead, we found that alternative splicing affecting the first cytosolic loop determined apical membrane targeting of PMCA2. Only the "w" form, which contains a 45-amino acid residue insertion, showed prominent apical membrane localization. By contrast, the x and z splice variants containing insertions of 14 and 0 residues, respectively, localized to the basolateral membrane. The w splice insert was the crucial determinant of apical PMCA2 localization, and this was independent of the splice configuration at the COOH-terminal end of the pump; both PMCA2w/b and PMCA2w/a showed prominent apical targeting, whereas PMCA2x/b, PMCA2z/b, and PMCA2z/a were confined to the basolateral membrane. These data report the first differential effect of alternative splicing within the first cytosolic loop of PMCA2 and help explain the selective enrichment of specific PMCA2 isoforms in specialized membrane compartments such as stereocilia of auditory hair cells.  相似文献   

17.
Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone.  相似文献   

18.

Background

The mouse anterior visceral endoderm (AVE) and the chick hypoblast are thought to have homologous roles in the early stages of neural induction and primitive streak formation. In mouse, many regulatory elements directing gene expression to the AVE have been identified. However, there is no technique to introduce DNA into the chick hypoblast that would enable a comparison of their activity and this has hampered a direct comparison of the regulation of gene expression in the mouse and chick extraembryonic endoderm.

Results

Here we describe a new method to introduce DNA into the chick hypoblast, using lipofectamine-mediated transfection. We show that the hypoblast can be easily transfected and that it starts to express a luciferase reporter within 2 hours of transfection. The validity of technique is tested by following the movement and fate of hypoblast cells, which reveals their translocation to the anterior germinal crescent. We then introduce a vector containing GFP driven by the mouse VEcis-Otx2 enhancer (which directs gene expression to the mouse AVE) and we detect activity in the hypoblast.

Conclusion

The new technique for delivering expression constructs to the chick hypoblast will enable studies on gene activity and regulation to be performed in this tissue, which has proved difficult to transfect by electroporation. Our findings also reveal that regulatory elements that direct gene expression to the mouse AVE are active in chick hypoblast, supporting the idea that these two tissues have homologous functions.  相似文献   

19.
The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60–70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die.  相似文献   

20.
The cochleae of chick embryos of 8 days of incubation until hatching (21 days) were examined by scanning electron microscopy. Unlike what one would expect from the literature, the total number of hair cells per cochlea (10,405 +/- 529) is already determined and visible in a 10-day embryo and the growth of the cochlea is a result of the growth in size and surface area of the hair cells. We also find that the hair cells differentiate simultaneously throughout the cochlea and have followed the differentiation of individual hair cells throughout development. During development we find that the total number, hexagonal packing, and orientation of the stereocilia in each hair cell is determined early and accurately (9- to 10-day embryos). The stereocilia then begin to elongate in all the cells of the cochlea at approximately 0.5 micron/day. By Day 12 the tallest stereocilia in each cell are 1.5-1.8 micron long, the mature length for cells at the proximal end of the cochlea. At this point all stereocilia cease elongating, but those along the inferior edge gradually increase in width from 0.11 micron to maximally 0.19 micron in 17-day embryos. When the stereocilia on the inferior edge reach their mature width, widening ceases and the elongation of stereocilia in the distal hair cells begins again. When these stereocilia have attained their mature lengths, they stop growing. Thus elongation and widening of stereocilia are separated in time. During this period, 11 to 13 days, the shape of the tufts at the proximal end of the cochlea changes. This occurs because stereocilia in the front of each tuft are absorbed while others at the sides appear de novo. This rearrangement converts a circular bundle of stereocilia to a rectangular bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号