首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Camargue area of southern France experienced the re-emergence of West Nile Virus (WNV) in the late summer of 2000 and 2004. Immediately preceding the 2004 outbreak, samples were collected from 432 birds of 32 different species captured in mist nets and from 201 Cattle Egret (Bubulcus ibis) nestlings sampled in their nests between 1 April and 12 June 2004. West Nile virus neutralizing titers of >/=40 were detected in 4.8% (95% confidence limit, 2.9-7.5%) of the adult birds and in 1.6% (0.3-4.6%) of the egret nestlings. Migratory passerines had a higher prevalence of WNV neutralizing antibodies (7.0%) than did resident and short-distance migratory passerines (0.8%), suggesting exposure to WNV or a related flavivirus during overwintering in Africa.  相似文献   

2.
West Nile virus (WNV) is a vector-borne pathogen that was first detected in the United States in 1999. The natural transmission cycle of WNV involves mosquito vectors and avian hosts, which vary in their competency to transmit the virus. American robins are an abundant backyard species in the United States and appear to have an important role in the amplification and dissemination of WNV. In this study we examine the response of American robins to infection with various WNV doses within the range of those administered by some natural mosquito vectors. Thirty American robins were assigned a WNV dosage treatment and needle inoculated with 100.95 PFU, 101.26 PFU, 102.15 PFU, or 103.15 PFU. Serum samples were tested for the presence of infectious WNV and/or antibodies, while oral swabs were tested for the presence of WNV RNA. Five of the 30 (17%) robins had neutralizing antibodies to WNV prior to the experiment and none developed viremia or shed WNV RNA. The proportion of WNV-seronegative birds that became viremic after WNV inoculation increased in a dose dependent manner. At the lowest dose, only 40% (2/5) of the inoculated birds developed productive infections while at the highest dose, 100% (7/7) of the birds became viremic. Oral shedding of WNV RNA followed a similar trend where robins inoculated with the lower two doses were less likely to shed viral RNA (25%) than robins inoculated with one of the higher doses (92%). Viremia titers and morbidity did not increase in a dose dependent manner; only two birds succumbed to infection and, interestingly, both were inoculated with the lowest dose of WNV. It is clear that the disease ecology of WNV is a complex interplay of hosts, vectors, and viral dose delivered.  相似文献   

3.
Kwan JL  Kluh S  Reisen WK 《PloS one》2012,7(3):e34127

Background

West Nile virus (WNV) is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011.

Methods

Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND) cases reported to the Los Angeles County Department of Public Health.

Results

Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4–6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan – Mar) was negatively correlated with the number of WNND cases during the succeeding summer (Jul–Sep).

Conclusions

Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by outbreaks of WNND cases during the succeeding summer. Because mosquitoes feed almost exclusively on these avian species, amplification was directly related to the availability of receptive non-immune hosts.  相似文献   

4.
A major number of West Nile virus (WNV) infections in humans occurred in 2010 in northern Greece, with 262 laboratory confirmed cases. In 2011, fewer cases were reported, but the pattern was more dispersed throughout the Greek mainland. Isolated strains were similar to lineage 2 strains detected in previous years in Austria and Hungary from birds of prey. We conducted a serological surveillance study on hunter-harvested wild birds, to determine possible exposure of avian species during the current outbreak. Serum samples from a total of 113 Eurasian magpies and 85 turtle doves (abundant resident and migratory avian species, respectively, with potential roles in WNV epidemiology) were tested. These birds were hunter-harvested during 2011 from various prefectures both affected and not affected by the WNV outbreak in Greece. Sera were tested for the presence of WNV IgG antibodies by indirect immunofluorescence assay (IFA). Verification of positive results by a micro-virus neutralization test (VNT) was also performed. A total of 23 out of 113 (20.4%) Eurasian magpies and 6/85 (7.1%) turtle doves were found positive. Results showed association of human cases with wild birds’ exposure to the virus; no avian sera were found positive in prefectures not affected by the WNV outbreak. In contrast, positive avian sera were found in every prefecture that human WNV cases occurred in 2011. High seroprevalence in Eurasian magpies suggests high activity of WNV in the areas. Findings of past exposure of migratory birds like turtle doves to WNV upon their arrival in resting areas in Greece suggest various avian species with similar migration traits as target species for viral isolation studies, as they can be considered candidates for the introduction of WNV lineage 2 in Greece from Central Europe.  相似文献   

5.
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host–vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of ‘dilution effect’) best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.  相似文献   

6.
7.
The rapid geographic spread of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) across the United States has stimulated interest in comparative host infection studies to delineate competent avian hosts critical for viral amplification. We compared the host competence of four taxonomically related blackbird species (Icteridae) after experimental infection with WNV and with two endemic, mosquito-borne encephalitis viruses, western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), and St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV). We predicted differences in disease resistance among the blackbird species based on differences in life history, because they differ in geographic range and life history traits that include mating and breeding systems. Differences were observed among the response of these hosts to all three viruses. Red-winged Blackbirds were more susceptible to SLEV than Brewer's Blackbirds, whereas Brewer's Blackbirds were more susceptible to WEEV than Red-winged Blackbirds. In response to WNV infection, cowbirds showed the lowest mean viremias, cleared their infections faster, and showed lower antibody levels than concurrently infected species. Brown-headed Cowbirds also exhibited significantly lower viremia responses after infection with SLEV and WEEV as well as coinfection with WEEV and WNV than concurrently infected icterids. We concluded that cowbirds may be more resistant to infection to both native and introduced viruses because they experience heightened exposure to a variety of pathogens of parenting birds during the course of their parasitic life style.  相似文献   

8.
Vertebrate host diversity has been postulated to mediate prevalence of zoonotic, vector-borne diseases, such that as diversity increases, transmission dampens. This “dilution effect” is thought to be caused by distribution of infective bites to incompetent reservoir hosts. We quantified avian species richness, avian seroprevalence for antibodies to West Nile virus (WNV), and infection of WNV in Culex mosquitoes, in the Chicago metropolitan area, Illinois, USA, a region of historically high WNV activity. Results indicated high overall avian seroprevalence and variation in seroprevalence across host species; however, there was no negative correlation between avian richness and Culex infection rate or between richness and infection status in individual birds. Bird species with high seroprevalence, especially northern cardinals and mourning doves, may be important sentinels for WNV in Chicago, since they were common and widespread among all study sites. Overall, our results suggest no net effect of increasing species richness to West Nile virus transmission in Chicago. Other intrinsic and extrinsic factors, such as variation in mosquito host preference, reservoir host competence, temperature, and precipitation, may be more important than host diversity for driving interannual variation in WNV transmission. These results from a fine-scale study call into question the generality of a dilution effect for WNV at coarser spatial scales.  相似文献   

9.

Background

Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals.

Methodology

A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100).

Findings

The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers.

Conclusions

Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution.  相似文献   

10.
West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.  相似文献   

11.
The domain III of the West Nile virus (WNV) envelope glycoprotein (E) was shown to serve as virus attachment domain to the cellular receptor, and neutralizing Abs have been mapped to this specific domain. In this study, domain III of the WNV E protein (WNV E DIII) was expressed as a recombinant protein and its potential as a subunit vaccine candidate was evaluated in BALB/C mice. Immunization of WNV E DIII protein with oligodeoxynucleotides (CpG-DNA) adjuvant by i.p. injection was conducted over a period of 3 wk. The immunized mice generated high titer of WNV-neutralizing Abs. Murine Ab against WNV E DIII protein was also capable of neutralizing Japanese encephalitis virus. The IgG isotypes generated were predominantly IgG2a in the murine sera against the recombinant protein. Splenocyte cultures from the mice coadministrated with WNV E DIII protein and CpG secreted large amounts of IFN-gamma and IL-2 and showed proliferation of T cells in the presence of WNV E DIII protein. Overall, this study highlighted that recombinant WNV E DIII protein delivered in combination with CpG adjuvant to mice generated a Th1 immune response type against WNV and can serve as a potential vaccine to prevent WNV infection.  相似文献   

12.
West Nile virus (WNV) infection can be fatal to many bird species, including numerous raptors, though population- and ecosystem-level impacts following introduction of the virus to North America have been difficult to document. Raptors occupy a diverse array of habitats worldwide and are important to ecosystems for their role as opportunistic predators. We documented initial (primary) WNV infection and then regularly measured WNV-specific neutralizing antibody titers in 16 resident raptors of seven species, plus one turkey vulture. Most individuals were initially infected and seroconverted between July and September of 2003, though three birds remained seronegative until summer 2006. Many of these birds became clinically ill upon primary infection, with clinical signs ranging from loss of appetite to moderate neurological disease. Naturally induced WNV neutralizing antibody titers remained essentially unchanged in some birds, while eight individuals experienced secondary rises in titer presumably due to additional exposures at 1, 2, or 3 years following primary infection. No birds experienced clinical signs surrounding or following the time of secondary exposure, and therefore antibodies were considered protective. Results of this study have implications for transmission dynamics of WNV and health of raptor populations, as well as the interpretation of serologic data from free-ranging and captive birds. Antibodies in raptors surviving WNV may persist for multiple years and protect against potential adverse effects of subsequent exposures.  相似文献   

13.
14.
Walsh MG 《PloS one》2012,7(2):e30620
The epidemiology and ecology of West Nile virus (WNV) have not yet been completely described. In particular, the specific roles of climate and water in the landscape in the occurrence of human WNV cases remain unknown. This study used Poisson regression to describe the relationships between WNV cases and temperature, precipitation, and the hydrogeography of the landscape in New York State from 2000 to 2010. Fully adjusted models showed that hydrogeographic area was significantly inversely associated with WNV cases (incidence rate ratio (IRR) = 0.99; 95% C.I. = 0.98–0.997, p = 0.04), such that each one square kilometer increase in hydrogeographic area was associated with a 1% decrease in WNV incidence. This association was independent of both temperature, which was also associated with WNV incidence (IRR = 2.06; 95% C.I. = 1.84–2.31, p<0.001), and precipitation, which was not (IRR = 1.0; 95% C.I. = 0.99–1.01, p = 0.16). While the results are only suggestive due to the county-level aggregated data, these findings do identify a potentially important surveillance signal in the landscape epidemiology of WNV infection.  相似文献   

15.
West Nile virus (WNV) is now endemic in California, with annual transmission documented by the statewide surveillance system. Although much is known about the horizontal avian‐mosquito transmission cycle, less is known about vertical transmission under field conditions, which may supplement virus amplification during summer and provide a mechanism to infect overwintering female mosquitoes during fall. The current study identified clusters of WNV‐infected mosquitoes in Sacramento and Yolo Counties, CA, during late summer 2011 and tested field‐captured ovipositing female mosquitoes and their progeny for WNV RNA to estimate the frequency of vertical transmission. Space‐time clustering of WNV‐positive Culex pipiens complex pools was detected in the northern Elk Grove area of Sacramento County between July 18 and September 18, 2011 (5.22 km radius; p<0.001 and RR=7.80). Vertical transmission by WNV‐infected females to egg rafts was 50% and to larvae was 40%. The estimated minimal filial infection rate from WNV‐positive, ovipositing females was 2.0 infected females/1,000. The potential contribution of vertical transmission to WNV maintenance and amplification are discussed.  相似文献   

16.
West Nile fever (WNF) and Rift Valley fever (RVF) are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV) circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV) re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8) and 10(8.5) plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.  相似文献   

17.
For vectorborne infections, host selection by bloodfeeding arthropods dictates the interaction between host and pathogen. Because Culex mosquitoes that transmit West Nile virus (WNV) feed both on mammalian and avian hosts with varying competence, understanding the bloodfeeding patterns of these mosquitoes is important for understanding the transmission dynamics of WNV. Herein, we describe a new microsphere‐based assay using Luminex xMAP® technology to rapidly identify 15 common hosts of Culex mosquitoes at our California study sites. The assay was verified with over 100 known vertebrate species samples and was used in conjunction with DNA sequencing to identify over 125 avian and mammalian host species from unknown Culex bloodmeals, more quickly and with less expense than sequencing alone. In addition, with multiplexed labelled probes, this microsphere array identified mixed bloodmeals that were difficult to discern with traditional sequencing. The microsphere set was easily expanded or reduced according to host range in a specific area, and this assay has made it possible to rapidly screen thousands of Culex spp. bloodmeals to extend our understanding of WNV transmission patterns.  相似文献   

18.
We report on life history characteristics, temporal, and age-related effects influencing the frequency of occurrence of avian influenza (AI) viruses in four species of migratory geese breeding on the Yukon-Kuskokwim Delta, Alaska. Emperor geese (Chen canagica), cackling geese (Branta hutchinsii), greater white-fronted geese (Anser albifrons), and black brant (Branta bernicla), were all tested for active infection of AI viruses upon arrival in early May, during nesting in June, and while molting in July and August, 2006–2010 (n = 14,323). Additionally, prior exposure to AI viruses was assessed via prevalence of antibodies from sera samples collected during late summer in 2009 and 2010. Results suggest that geese are uncommonly infected by low pathogenic AI viruses while in Alaska. The percent of birds actively shedding AI viruses varied annually, and was highest in 2006 and 2010 (1–3%) and lowest in 2007, 2008, and 2009 (<0.70%). Contrary to findings in ducks, the highest incidence of infected birds was in late spring when birds first arrived from staging and wintering areas. Despite low prevalence, most geese were previously exposed to AI viruses, as indicated by high levels of seroprevalence during late summer (47%–96% across species; n = 541). Seroprevalence was >95% for emperor geese, a species that spends part of its life cycle in Asia and is endemic to Alaska and the Bering Sea region, compared to 40–60% for the other three species, whose entire life cycles are within the western hemisphere. Birds <45 days of age showed little past exposure to AI viruses, although antibodies were detected in samples from 5-week old birds in 2009. Seroprevalence of known age black brant revealed that no birds <4 years old had seroconverted, compared to 49% of birds ≥4 years of age.  相似文献   

19.
Surveillance is critical for identifying and monitoring pathogen activity in wildlife populations, but often is cost- and time-prohibitive and logistically challenging. We tested the hypothesis that wildlife rehabilitation centers are useful for monitoring pathogen activity using West Nile virus (WNV) as a case study. We hypothesized that birds submitted to wildlife rehabilitation centers would have a similar prevalence of antibody to WNV as free-ranging birds. From 2008 to 2010, we collected sera from peridomestic birds submitted to the Wildlife Care Clinic (WCC), a wildlife rehabilitation center in central Iowa, and tested them for antibodies to WNV. We also collected and tested sera from free-ranging peridomestic birds in the area from which approximately 50% of WCC submissions historically originated. Prevalences of WNV antibodies in free-ranging birds and in peridomestic WCC birds were 2.3% (44/1,936) and 2.8% (2/72), respectively. However, none of the birds submitted to the WCC from the area where we captured free-ranging birds had antibodies (0/29). Our results indicate that rehabilitation facilities are not likely to be useful for monitoring WNV activity at small spatial scales or over short-time periods due to the low endemic prevalence of WNV, and low and variable submission rates. However, at larger spatial scales (ca. nine Iowa counties) WNV antibody prevalence in peridomestic birds submitted to the WCC was similar to that of free-ranging birds. Although limitations to using rehabilitation birds to monitor WNV must be considered, testing these birds could be useful for monitoring WNV activity regionally, especially with many states limiting surveillance due to budgetary constraints.  相似文献   

20.
West Nile virus, which was recently introduced to North America, is a mosquito-borne pathogen that infects a wide range of vertebrate hosts, including humans. Several species of birds appear to be the primary reservoir hosts, whereas other bird species, as well as other vertebrate species, can be infected but are less competent reservoirs. One hypothesis regarding the transmission dynamics of West Nile virus suggests that high bird diversity reduces West Nile virus transmission because mosquito blood-meals are distributed across a wide range of bird species, many of which have low reservoir competence. One mechanism by which this hypothesis can operate is that high-diversity bird communities might have lower community-competence, defined as the sum of the product of each species’ abundance and its reservoir competence index value. Additional hypotheses posit that West Nile virus transmission will be reduced when either: (1) abundance of mosquito vectors is low; or (2) human population density is low. We assessed these hypotheses at two spatial scales: a regional scale near Saint Louis, MO, and a national scale (continental USA). We found that prevalence of West Nile virus infection in mosquito vectors and in humans increased with decreasing bird diversity and with increasing reservoir competence of the bird community. Our results suggest that conservation of avian diversity might help ameliorate the current West Nile virus epidemic in the USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号