首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional normally distributed random dot patterns were used in two experiments on visual orientation estimation. In the first experiment the patterns differed in their sample correlation and in dot number. In the second one the number of dots was maintained constant but the patterns were generated as a superposition of two normally distributed orthogonal sets composed of different number of dots. In both experiments the estimated orientation depended on stimuli correlation-with increasing correlation the estimated orientation gets closer to the orientation of the least square distance axis of the pattern. Even at very low unsignificant correlations there still remained a hint about stimulus orientation which was not estimated at random. Equalizing consecutively the number of dots in the two orthogonal dot patterns during the second experiment did not result in chance performance either. The bimodal angular distributions of the obtained responses permitted to approach the problem of orientation ambiguity. The results are discussed in terms of optimization processes taking place in the visual system.  相似文献   

2.
This research investigates the performance of graphical dot arrays designed to make discrimination of relative numerosity as effortless as possible at the same time as making absolute (quantitative) numerosity estimation as effortful as possible. Comparing regular, random, and hybrid (randomized regular) configurations of dots, the results indicate that both random and hybrid configurations reduce absolute numerosity estimation precision, when compared with regular dots arrays. However, discrimination of relative numerosity is significantly more accurate for hybrid dot arrays than for random dot arrays. Similarly, human subjects report significantly lower levels of subjective confidence in judgments when using hybrid dot configurations as compared with regular configurations; and significantly higher levels of subjective confidence as compared with random configurations. These results indicate that data graphics based on the hybrid, randomized-regular configurations of dots are well-suited to applications that require decisions to be based on numerical data in which the absolute quantities are less certain than the relative values. Examples of such applications include decision-making based on the outputs of empirically-based mathematical models, such as health-related policy decisions using data from predictive epidemiological models.  相似文献   

3.
Shore H  Shore M 《Spatial Vision》2007,20(3):177-195
The percept of oscillatory motion in depth was generated by a luminance modulation of a sinusoidal nature induced within each dot pair of a stationary random assembly of paired dots. The dots were miniature sources of polarized light viewed through a rotating ocular polarizer, which facilitated both the percept of oscillations and the modulation of luminance at any desired frequency. Depth responses were studied as a function of frequency within the 0-2 Hz range. A strong amplitude decrease was noticed at a mean frequency of f(1)=0.81 Hz; oscillations were perceived as 'rectified' for f > f(1) with an additional minimum of crossed-disparity depth at f(2)=1.60 Hz. It is suggested that the intensity modulation of the light beams mapping the stationary stimuli onto the retinae was a likely factor responsible for the observed depth minima and the rectification of faster oscillations. Results are compared to those obtained in a traditional setting, where the percept of oscillations in depth had been generated by disparity variations due to lateral motion of the stimuli.  相似文献   

4.
A formal model is proposed, describing how the perceptual interpretation of dot figures is guided by the Gestalt rule of good continuation. The algorithm will be restricted to figures with a collinear dot array (line) embedded in a background of randomly placed dots. The model, CODE-2, is an elaboration of the model, CODE-1, of grouping dots on the basis of the Gestalt rule of (relative) proximity, and consists of the introduction of non-circular symmetric gaussian distribution functions for the representation of the orientation dependent strength of interaction between collinear dots. Supra-threshold contours of the function, resulting from a superposition on each dot of the gaussian functions, are assumed to predict the perceptual grouping of the dots. A quantitative measure for the perceptual salience of dotted lines was defined as the contrast between the internal coherence of the line dots, and their interference with the noise dots. For 20 stimuli the CODE-2 grouping of the dots is reported, together with the results of a line-in-noise latency experiment. There was a significant correlation between the predicted saliences and the experimental results. The results support the usefulness of representing good continuation between collinear dots by non-circular symmetric gaussian distribution functions.  相似文献   

5.
Abstract: If individuals can be identified from patterns in their footprints, noninvasive survey methods can be used to estimate abundance. Track plates capture fine detail in the footprints of fishers (Martes pennanti), recording rows of dots corresponding to tiny papillae on the animal's metacarpal pad. We show that the pattern of these dots can be used to identify individual fishers, similar to human fingerprints. A probabilistic model of uniqueness based on variation in spacing between 1,400 pairs of dots that we measured in prints of 14 different fisher feet suggests the probability of encountering a similar pattern in the print of a different foot by chance alone is ≤ 0.35n, where n = the number of dot pairs examined. This predicts a 0.00003 probability that a match made using 10 pairs of dots is false. Dot spacing from footprints made by the same foot was remarkably consistent (sN = 0.02 mm, n = 24 dot pairs). Combined, these results suggest dot patterns in fisher footprints were unique to individuals and were consistently reproduced on track plates. Empirical tests of matching accuracy were best with good-quality prints, highlighting the need for experience judging when prints are usable. We applied print matching to fisher detections collected on track plates deployed at 500-m intervals along 10 3.5-km transects in the Adirondack region of New York, USA. Of 62 fisher detections, 85% had ≥ 1 footprint of suitable quality to compare with other high-quality prints. We found that most detections from a transect were from the same individual fisher suggesting nonindependence of detections. Thus, data from traditional track-plate deployments over small time periods cannot be used as a measure of abundance, but new study designs using print matching could obtain robust noninvasive, mark—recapture density estimates.  相似文献   

6.
Vonk J  Beran MJ 《Animal behaviour》2012,84(1):231-238
Studies of bear cognition are notably missing from the comparative record despite bears' large relative brain size and interesting status as generalist carnivores facing complex foraging challenges, but lacking complex social structures. We investigated the numerical abilities of three American black bears (Ursus Americanus) by presenting discrimination tasks on a touch-screen computer. One bear chose the larger of two arrays of dot stimuli, while two bears chose the smaller array of dots. On some trials the relative number of dots was congruent with the relative total area of the two arrays. On other trials number of dots was incongruent with area. All of the bears were above chance on trials of both types with static dots. Despite encountering greater difficulty with dots that moved within the arrays, one bear was able to discriminate numerically larger arrays of moving dots, and a subset of moving dots from within the larger array, even when area and number were incongruent. Thus, although the bears used area as a cue to guide responding, they were also able to use number as a cue. The pattern of performance was similar to that found previously with monkeys, and suggests that bears may also show other forms of sophisticated quantitative abilities.  相似文献   

7.
Alais D  Apthorp D  Karmann A  Cass J 《PloS one》2011,6(12):e28675
Temporal integration in the visual system causes fast-moving objects to leave oriented 'motion streaks' in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over ≈100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving ('streaky') and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from -200 to +700 ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks.  相似文献   

8.
Sixty subjects were tested to assign orientation to ten dot patterns differing in their overall form and the number of dots in the pattern. The patterns were presented in four different positions in the visual field and their orientation was estimated in two ways. It was demonstrated that the assignment of orientation did not depend on the position of the pattern in the visual field as well as on the method of estimation used. A quantitative measure for the elongation of a dot pattern is proposed which correlates with the degree of ambiguity in orientation estimation. The greater the elongation the smaller the standard deviation of the estimates given. The distributions of the estimates for the ten patterns were analyzed. It was shown that they can be presented as superpositions of two or more groups of normally distributed estimates determined by some salient characteristics of the stimuli. Data are discussed from the point of view that assignment of orientation to dot patterns reveals the existence of optimization mechanisms in human brain that extract perceptual invariants from external stimulation.  相似文献   

9.
A peripherally presented target embedded in dynamic texture perceptually disappears (or 'fills-in') after around 10 s of steady fixation. This phenomenon was investigated for a target containing moving dots. The effects of manipulating the coherence of the motion within the target and the density of dots across the whole screen were explored. Coherence thresholds for the detection of a target at different dot densities were recorded for comparison. Fading occurred faster as either motion coherence or dot density was reduced. Coherence thresholds for target detection were unaffected by manipulations of dot density. There appeared to be no relationship between the stimulus exposure time needed for fading and the coherence threshold for detection of a target. The results suggest that the time taken for a target to fade is not a simple function of its motion detection threshold.  相似文献   

10.
The effect upon perceived location of adding an extra dot offset from the centre of a cluster of pseudorandom dots was investigated using a vernier acuity task. With this technique, weighting functions showing the extent to which the added dot pulls the apparent location of the entire cluster can be defined as a function of distance from the centre of the cluster. When dot density within the cluster is high, the weighting functions approximate to what would be expected on the basis of centroid alignment. With low dot densities, it appears that performance is determined by aligning the outermost dots within each cluster. The peak amplitudes of these weighting functions are proportional to the square root of dot density within the clusters. The results are consistent with the view that each vernier element is localised in an orthoaxial direction prior to discrimination of the vernier offset.  相似文献   

11.
Two-photon excitation fluorescence cross-correlation spectroscopy (TPE-XCS) is a very suitable method for studying interactions of two distinctly labeled fluorescent molecules. As such, it lends itself nicely to the study of ligand-receptor interactions. By labeling the ligand with one color of fluorescent dye and the receptor with another, it is possible to directly monitor ligand binding rather than inferring binding by monitoring downstream effects. One challenge of the TPE-XCS approach is that of separating the signal due to the receptor from that of the ligand. Using standard organic fluorescent labels there is almost inevitably spectral cross talk between the detection channels, which must be accounted for in TPE-XCS data analysis. However, using quantum dots as labels for both ligand and receptor this limitation can be alleviated, because of the dot's narrower emission spectra. Using solely quantum dots as fluorescent labels is a novel approach to TPE-XCS, which may be generalizable to many pairs of interacting biomolecules after the proof of principle and the assessment of limitations presented here. Moreover, it is essential that relevant pharmacological parameters such as the equilibrium dissociation constant, K(d), can be easily extracted from the XCS data with minimal processing. Herein, we present a modified expression for fractional occupancy based on the auto- and cross-correlation decays obtained from a well-defined ligand-receptor system. Nanocrystalline semiconductor quantum dots functionalized with biotin (lambda(em) = 605 nm) and streptavidin (lambda(em) = 525 nm) were used for which an average K(d) value of 0.30 +/- 0.04 x 10(-9) M was obtained (cf. native system approximately 10(-15)). Additionally, the off-rate coefficient (k(off)) for dissociation of the two quantum dots was determined as 5 x 10(-5) s(-1). This off-rate is slightly larger than for native biotin-streptavidin (5 x 10(-6) s(-1)); the bulky nature of the quantum dots and restricted motion/orientation of functionalized dots in solution can account for differences in the streptavidin-biotin mediated dot-dot binding compared with those for native streptavidin-biotin.  相似文献   

12.
The apparent line-like structure in dot patterns derives substantially from the orientation defined by pairings of adjacent dots. Two alternative models have been proposed for making these pairings, one in which the individual dots are treated as discrete grouping tokens, and the second in which the pairing orientation derives from spatial summation by simple cell receptive fields. Contradictory evidence has been found both directly in support of, and directly against, both models. Much of the debate about these two models has hinged on the degree of linearity of summation expected in the simple cell model. Recent neurophysiological evidence changes the balance of the debate, invalidating certain earlier arguments based on linearity and providing a model way of showing that simple cells do indeed play a major, but not necessarily exclusive, role in dot groupings.  相似文献   

13.
We describe a method for the measurement of visual discrimination between simple patterns. The target to be discriminated is embedded in a background consisting of multiple, randomly positioned but identical elements, and is distinguished by a single parameter such as magnification or relative rotation. The positions of the target and background elements are varied randomly between presentations and discrimination for different values of the target parameter is measured in terms of the time taken for detection of the target. Using this method, we have studied discrimination of rotation and of magnification for simple pattern elements such as lines, triangles and squares. The results for rotation discrimination are interpreted as evidence for the activity of two discrimination mechanisms, one sensitive to the orientation of the lines from which the pattern elements are constructed and the other to the orientation of the pattern element relative to the visual field.  相似文献   

14.
Gebuis T  Reynvoet B 《PloS one》2012,7(5):e37426
Mainstream theory suggests that the approximate number system supports our non-symbolic number abilities (e.g. estimating or comparing different sets of items). It is argued that this system can extract number independently of the visual cues present in the stimulus (diameter, aggregate surface, etc.). However, in a recent report we argue that this might not be the case. We showed that participants combined information from different visual cues to derive their answers. While numerosity comparison requires a rough comparison of two sets of items (smaller versus larger), numerosity estimation requires a more precise mechanism. It could therefore be that numerosity estimation, in contrast to numerosity comparison, might rely on the approximate number system. To test this hypothesis, we conducted a numerosity estimation experiment. We controlled for the visual cues according to current standards: each single visual property was not informative about numerosity. Nevertheless, the results reveal that participants were influenced by the visual properties of the dot arrays. They gave a larger estimate when the dot arrays consisted of dots with, on average, a smaller diameter, aggregate surface or density but a larger convex hull. The reliance on visual cues to estimate numerosity suggests that the existence of an approximate number system that can extract numerosity independently of the visual cues is unlikely. Instead, we propose that humans estimate numerosity by weighing the different visual cues present in the stimuli.  相似文献   

15.
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32microg/mL of beta-lactamase with 4-fold increase in the fluorescence emission.  相似文献   

16.
Motion is one of the most efficient cues for shape perception. We conducted behavioral experiments to examine how monkeys perceive shapes defined by motion cues and whether they perceive them as humans do. We trained monkeys to perform a shape discrimination task in which shapes were defined by the motion of random dots. Effects of dot density and dot speed on the shape perception of monkeys were examined. Human subjects were also tested using the same paradigm and the test results were compared with those of monkeys. In both monkeys and humans, correct performance rates declined when density or speed of random dots was reduced. Both of them tended to confuse the same combinations of shapes frequently. These results suggest that monkeys and humans perceive shapes defined by motion cues in a similar manner and probably have common neural mechanisms to perceive them. Electronic Publication  相似文献   

17.
Fluorescent proteins from the green fluorescent protein (GFP) family interact strongly with CdSe/ZnS quantum dots. Photoluminescence of GFP5 is suppressed by red-emitting CdSe/ZnS quantum dots with high efficiency in a pH-dependent manner. The elevated degree of quenching, around 90%, makes it difficult to analyze the remaining signal, and it is not clear yet whether FRET is the reason behind the quenching. When the donor is a green-emitting CdSe/ZnS quantum dot and the acceptor is the HcRed1 protein, it is possible to detect quenching of the donor and sensitized emission from the acceptor. It was verified that the sensitized emission has the low anisotropy characteristic of FRET. The present characterization identifies donor-acceptor pairs formed by fluorescent proteins and CdSe/ZnS quantum dots that are suitable for the exploration of cellular events. These donor-acceptor pairs take advantage of the exceptional photochemical properties of quantum dots allied with the unique ability of fluorescent proteins to act as gene-based fluorescent probes.  相似文献   

18.
Greene E 《PloS one》2007,2(9):e871
Shape encoding mechanisms can be probed by the sequential brief display of dots that mark the boundary of the shape, and delays of less that a millisecond between successive dots can impair recognition. It is not entirely clear whether this is accomplished by preserving stimulus timing in the signal being sent to the brain, or calls for a retinal binding mechanism. Two experiments manipulated the degree of simultaneity among and within dot pairs, requiring also that the pair members be in the same half of the visual field or on opposite halves, i.e., across the midline from one another. Recognition performance was impaired the same for these two conditions. The results make it likely that simultaneity of cues is being registered within the retina. A potential mechanism is suggested, calling for linkage of stimulated sites through activation of PA1 cells. A third experiment confirmed a prior finding that the overall level of recognition deficit is partly a function of display-set size, and affirmed submillisecond resolution in binding dot pairs into effective shape-recognition cues.  相似文献   

19.
Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.  相似文献   

20.
A combined influence of stimulus orientation and structure on the judgement of length was tested in psychophysical experiments. The subjects adjusted the test part of a stimulus to be equal in length to the reference part. The V-shaped stimuli (three dots, or the Oppel-Kundt figure, or one dot and two Müller-Layer wings) were generated on the monitor. In the Oppel-Kundt and Müller-Layer figures, the filled part was considered as a reference and the empty part as a test. In session of the experiments, values of errors measured as functions of orientation of the parts of the stimuli. We assume that experiments with the three-dot stimuli yielded pure characteristics of visual field anisotropy, while those with the Oppel-Kundt and Müller-Layer figures showed a combined effect of both anisotropy and illusions. The data demonstrated that illusions and anisotropy are to be interpreted as independent factors, which converge to an algebraic summation in a simultaneous manifestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号