首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. S. Bennett 《CMAJ》1976,114(3):186
  相似文献   

2.
Biocatalysis for pharmaceutical intermediates: the future is now   总被引:3,自引:0,他引:3  
Biocatalysis is continuing to gain momentum and is now becoming a key component in the toolbox of the process chemist, with a place alongside chemocatalysis and chromatographic separations. The pharmaceutical industry demands a speed of development that must be on a parallel with conventional chemistry and high optical purity for complex compounds with multiple chiral centres. This review describes how these demands are being addressed to make biocatalysis successful, particularly by the use of micro-scale technology for high-speed catalyst screening and process development alongside discipline integration of biology and engineering with chemistry. Developments in recombinant technology will further expand the repertoire of biocatalysis in the coming years to new chemistries and enable catalyst design to fit the process. Further development of biocatalysis for green chemistry and high productivity processes can also be expected.  相似文献   

3.
Zhang L  Pei YF  Li J  Papasian CJ  Deng HW 《PloS one》2010,5(11):e13857
Technology advances have promoted gene-based sequencing studies with the aim of identifying rare mutations responsible for complex diseases. A complication in these types of association studies is that the vast majority of non-synonymous mutations are believed to be neutral to phenotypes. It is thus critical to distinguish potential causative variants from neutral variation before performing association tests. In this study, we used existing predicting algorithms to predict functional amino acid substitutions, and incorporated that information into association tests. Using simulations, we comprehensively studied the effects of several influential factors, including the sensitivity and specificity of functional variant predictions, number of variants, and proportion of causative variants, on the performance of association tests. Our results showed that incorporating information regarding functional variants obtained from existing prediction algorithms improves statistical power under certain conditions, particularly when the proportion of causative variants is moderate. The application of the proposed tests to a real sequencing study confirms our conclusions. Our work may help investigators who are planning to pursue gene-based sequencing studies.  相似文献   

4.
Regenerative medicine technologies cross the boundaries of numerous scientific fields, including cell and molecular biology, chemical and material sciences (i.e., nanotechnology), engineering, molecular genetics, physiology and pharmacology. As such, regenerative medicine truly represents an integrative and logical (r)evolution of medical science. This groundbreaking field of research has the potential to radically alter the treatment of diseases or disorders characterized by the lack of viable cells or tissues. The goal of this report is to review the current challenges and opportunities in the emerging field of regenerative medicine and to describe the role of the pharmacological sciences in the acceleration, optimization, and evaluation of engineered tissue function in the service of regenerative medicine technologies.  相似文献   

5.
6.
7.
8.
Rare diseases affect nearly 300 million people globally with most patients aged five or less. Traditional diagnostic approaches have provided much of the diagnosis; however, there are limitations. For instance, simply inadequate and untimely diagnosis adversely affects both the patient and their families. This review advocates the use of whole genome sequencing in clinical settings for diagnosis of rare genetic diseases by showcasing five case studies. These examples specifically describe the utilization of whole genome sequencing, which helped in providing relief to patients via correct diagnosis followed by use of precision medicine.  相似文献   

9.
Stoichiometry and the new biology: the future is now   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

10.
11.
This special issue on "Systems biology and personalized medicine" includes five complementary articles that highlight how functional genomics and computational physiology can contribute to the development of predictive, preventive, personalized and participatory (P4) medicine. Edited by Prof. Leroy Hood and Prof. Charles Auffray.  相似文献   

12.
The genomics revolution has initiated a new era of population genetics where genome‐wide data are frequently used to understand complex patterns of population structure and selection. However, the application of genomic tools to inform management and conservation has been somewhat rare outside a few well studied species. Fortunately, two recently developed approaches, amplicon sequencing and sequence capture, have the potential to significantly advance the field of conservation genomics. Here, amplicon sequencing refers to highly multiplexed PCR followed by high‐throughput sequencing (e.g., GTseq), and sequence capture refers to using capture probes to isolate loci from reduced‐representation libraries (e.g., Rapture). Both approaches allow sequencing of thousands of individuals at relatively low costs, do not require any specialized equipment for library preparation, and generate data that can be analyzed without sophisticated computational infrastructure. Here, we discuss the advantages and disadvantages of each method and provide a decision framework for geneticists who are looking to integrate these methods into their research programme. While it will always be important to consider the specifics of the biological question and system, we believe that amplicon sequencing is best suited for projects aiming to genotype <500 loci on many individuals (>1,500) or for species where continued monitoring is anticipated (e.g., long‐term pedigrees). Sequence capture, on the other hand, is best applied to projects including fewer individuals or where >500 loci are required. Both of these techniques should smooth the transition from traditional genetic techniques to genomics, helping to usher in the conservation genomics era.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号