首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the surface of proteins by docking a large number of small “probe” molecules. Although we consider conformational ensembles obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition, which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be targeted by small ligands always includes conformational selection, although other recognition mechanisms may also be involved.  相似文献   

2.
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA‐binding proteins by superimposing DNA‐bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA‐binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Proteins 2014; 82:841–857. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Understanding protein–protein interactions (PPIs) is fundamental to infer how different molecular systems work. A major component to model molecular recognition is the buried surface area (BSA), that is, the area that becomes inaccessible to solvent upon complex formation. To date, many attempts tried to connect BSA to molecular recognition principles, and in particular, to the underlying binding affinity. However, the most popular approach to calculate BSA is to use a single (or in some cases few) bound structures, consequently neglecting a wealth of structural information of the interacting proteins derived from ensembles corresponding to their unbound and bound states. Moreover, the most popular method inherently assumes the component proteins to bind as rigid entities. To address the above shortcomings, we developed a Monte Carlo method-based Interface Residue Assessment Algorithm (IRAA), to calculate a combined distribution of BSA for a given complex. Further, we apply our algorithm to human ACE2 and SARS-CoV-2 Spike protein complex, a system of prime importance. Results show a much broader distribution of BSA compared to that obtained from only the bound structure or structures and extended residue members of the interface with implications to the underlying biomolecular recognition. We derive that specific interface residues of ACE2 and of S-protein are consistently highly flexible, whereas other residues systematically show minor conformational variations. In effect, IRAA facilitates the use of all available structural data for any biomolecular complex of interest, extracting quantitative parameters with statistical significance, thereby providing a deeper biophysical understanding of the molecular system under investigation.  相似文献   

6.
Protein interactions are often accompanied by significant changes in conformation. We have analyzed the relationships between protein structures and the conformational changes they undergo upon binding. Based upon this, we introduce a simple measure, the relative solvent accessible surface area, which can be used to predict the magnitude of binding-induced conformational changes from the structures of either monomeric proteins or bound subunits. Applying this to a large set of protein complexes suggests that large conformational changes upon binding are common. In addition, we observe considerable enrichment of intrinsically disordered sequences in proteins predicted to undergo large conformational changes. Finally, we demonstrate that the relative solvent accessible surface area of monomeric proteins can be used as a simple proxy for protein flexibility. This reveals a powerful connection between the flexibility of unbound proteins and their binding-induced conformational changes, consistent with the conformational selection model of molecular recognition.  相似文献   

7.
Noy E  Tabakman T  Goldblum A 《Proteins》2007,68(3):702-711
We investigate the extent to which ensembles of flexible fragments (FF), generated by our loop conformational search method, include conformations that are near experimental and reflect conformational changes that these FFs undergo when binary protein-protein complexes are formed. Twenty-eight FFs, which are located in protein-protein interfaces and have different conformations in the bound structure (BS) and unbound structure (UbS) were extracted. The conformational space of these fragments in the BS and UbS was explored with our method which is based on the iterative stochastic elimination (ISE) algorithm. Conformational search of BSs generated bound ensembles and conformational search of UbSs produced unbound ensembles. ISE samples conformations near experimental (less than 1.05 A root mean square deviation, RMSD) for 51 out of the 56 examined fragments in the bound and unbound ensembles. In 14 out of the 28 unbound fragments, it also samples conformations within 1.05 A from the BS in the unbound ensemble. Sampling the bound conformation in the unbound ensemble demonstrates the potential biological relevance of the predicted ensemble. The 10 lowest energy conformations are the best choice for docking experiments, compared with any other 10 conformations of the ensembles. We conclude that generating conformational ensembles for FFs with ISE is relevant to FF conformations in the UbS and BS. Forming ensembles of the isolated proteins with our method prior to docking represents more comprehensively their inherent flexibility and is expected to improve docking experiments compared with results obtained by docking only UbSs.  相似文献   

8.
We develop a procedure for exploring the free energy landscape of protein-peptide binding at atomic detail and apply it to PDZ domain-peptide interactions. The procedure involves soft constraints on receptor proteins providing limited chain flexibility, including backbone motions. Peptide chains are left fully flexible and kept in spatial proximity of the protein through periodic boundary conditions. By extensive Monte Carlo simulations, full representative conformational ensembles at temperatures where bound and unbound states coexist are obtained. To make this approach computationally feasible, we develop an effective all-atom energy function centering on hydrophobicity, hydrogen bonding, and electrostatic interactions. Our initial focus is a set of 11 PDZ domain-peptide pairs with experimentally determined complex structures. Minimum-energy conformations are found to be highly similar to the respective native structures in eight of the cases (all-atom peptide RMSDs < 6 Å). Having achieved that, we turn to a more complete characterization of the bound peptide state through a clustering scheme applied on the full ensembles of peptide structures. We find a significant diversity among bound peptide conformations for several PDZ domains, in particular involving the N terminal side of the peptide chains. Our computational model is then tested further on a set of nine PDZ domain-peptide pairs where the peptides are not originally present in the experimentally determined structures. We find a similar success rate in terms of the nativeness of minimum-energy conformations. Finally, we investigate the ability of our approach to capture variations in binding affinities for different peptide sequences. This is done in particular for a set of related sequences binding to the third PDZ domain of PSD-95 with encouraging results.  相似文献   

9.
The study of protein binding mechanisms is a major topic of research in structural biology. Here, we implement a combination of metrics to systematically assess the cost of backbone conformational changes that protein domains undergo upon association. Through the analyses of 2090 unique unbound → bound transitions, from over 12,000 structures, we show that two-thirds of these proteins do not suffer significant structural changes upon binding, and could thus fit the lock-and-key model well. Among the remaining proteins, one-third explores the bound conformation in the unbound state (conformational selection model) and, while most transitions are possible from an energetic perspective, a few do require external help to break the thermodynamic barrier (induced fit model). We also analyze the relationship between conformational transitions and protein connectivity, finding that, in general, domains interacting with many partners undergo smaller changes upon association, and are less likely to freely explore larger conformational changes.  相似文献   

10.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

11.
We develop coarse-grained models and effective energy functions for simulating thermodynamic and structural properties of multiprotein complexes with relatively low binding affinity (Kd > 1 μM) and apply them to binding of Vps27 to membrane-tethered ubiquitin. Folded protein domains are represented as rigid bodies. The interactions between the domains are treated at the residue level with amino-acid-dependent pair potentials and Debye-Hückel-type electrostatic interactions. Flexible linker peptides connecting rigid protein domains are represented as amino acid beads on a polymer with appropriate stretching, bending, and torsion-angle potentials. In simulations of membrane-attached protein complexes, interactions between amino acids and the membrane are described by residue-dependent short-range potentials and long-range electrostatics. We parameterize the energy functions by fitting the osmotic second virial coefficient of lysozyme and the binding affinity of the ubiquitin-CUE complex. For validation, extensive replica-exchange Monte Carlo simulations are performed of various protein complexes. Binding affinities for these complexes are in good agreement with the experimental data. The simulated structures are clustered on the basis of distance matrices between two proteins and ranked according to cluster population. In ∼ 70% of the complexes, the distance root-mean-square is less than 5 Å from the experimental structures. In ∼ 90% of the complexes, the binding interfaces on both proteins are predicted correctly, and in all other cases at least one interface is correct. Transient and nonspecifically bound structures are also observed. With the validated model, we simulate the interaction between the Vps27 multiprotein complex and a membrane-tethered ubiquitin. Ubiquitin is found to bind preferentially to the two UIM domains of Vps27, but transient interactions between ubiquitin and the VHS and FYVE domains are observed as well. These specific and nonspecific interactions are found to be positively cooperative, resulting in a substantial enhancement of the overall binding affinity beyond the ∼ 300 μM of the specific domains. We also find that the interactions between ubiquitin and Vps27 are highly dynamic, with conformational rearrangements enabling binding of Vps27 to diverse targets as part of the multivesicular-body protein-sorting pathway.  相似文献   

12.
13.
Tagging proteins by polyubiquitin is a key step in protein degradation. Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from the E2-conjugating enzyme to the substrate, yet crystallography indicates a large distance between the E2 and the substrate, raising the question of how this distance is bridged in the ubiquitin transfer reaction. Here, we demonstrate that the linker motions in the substrate binding proteins can allosterically shorten this distance to facilitate this crucial ubiquitin transfer step and increase this distance to allow polyubiquitination. We performed molecular dynamics simulations for five substrate binding proteins, Skp2, Fbw7, β-TrCP1, Cdc4, and pVHL, in two forms: bound to their substrates and bound to both substrate and adaptor. The adaptor connects the substrate binding proteins to the cullin. In the bound-to-both forms of all cases, we observed rotations of the substrate binding domain, shortening the gap between the tip of the substrate peptide and the E2 active site by 7-12 Å compared with the crystal structures. Overall, together with our earlier simulations of the unbound forms and the bound-to-adaptor forms, the emerging picture is that the maximum distance of 51-73 Å between the substrate binding domain and the E2 active site in the modeled unbound forms of these five proteins shrinks to a minimum of 39-49 Å in the bound-to-both forms. This large distance range, the result of allosterically controlled linker motions, facilitates ubiquitin transfer and polyubiquitination and as such argues that the cullin-RING E3 ubiquitin ligase is under conformational control. We further observed that substrate binding proteins with multiple substrate acceptor lysines have a larger distance range between the substrate and the E2 as compared with β-TrCP1, with only one acceptor lysine.  相似文献   

14.
Date hub proteins are a type of proteins that show multispecificity in a time‐dependent manner. To understand dynamic aspects of such multispecificity we studied Ubiquitin as a typical example of a date hub protein. Here we analyzed 9 biologically relevant Ubiquitin‐protein (ligand) heterodimer structures by using normal mode analysis based on an elastic network model. Our result showed that the self‐coupled motion of Ubiquitin in the complex, rather than its ligand‐coupled motion, is similar to the motion of Ubiquitin in the unbound condition. The ligand‐coupled motions are correlated to the conformational change between the unbound and bound conditions of Ubiquitin. Moreover, ligand‐coupled motions favor the formation of the bound states, due to its in‐phase movements of the contacting atoms at the interface. The self‐coupled motions at the interface indicated loss of conformational entropy due to binding. Therefore, such motions disfavor the formation of the bound state. We observed that the ligand‐coupled motions are embedded in the motions of unbound Ubiquitin. In conclusion, multispecificity of Ubiquitin can be characterized by an intricate balance of the ligand‐ and self‐coupled motions, both of which are embedded in the motions of the unbound form.  相似文献   

15.
Calmodulin (CaM) is a highly flexible calcium-binding protein that mediates signal transduction through an ability to differentially bind to highly variable binding sequences in target proteins. To identify how binding affects CaM motions, and its relationship to conformational entropy and target peptide sequence, we have employed fully atomistic, explicit solvent molecular dynamics simulations of unbound CaM and CaM bound to five different target peptides. The calculated CaM conformational binding entropies correlate with experimentally derived conformational entropies with a correlation coefficient R2 of 0.95. Selected side-chain interactions with target peptides restrain interhelical loop motions, acting to tune the conformational entropy of the bound complex via widely distributed CaM motions. In the complex with the most conformational entropy retention (CaM in complex with the neuronal nitric oxide synthase binding sequence), Lys-148 at the C-terminus of CaM forms transient salt bridges alternating between Glu side chains in the N-domain, the central linker, and the binding target. Additional analyses of CaM structures, fluctuations, and CaM-target interactions illuminate the interplay between electrostatic, side chain, and backbone properties in the ability of CaM to recognize and discriminate against targets by tuning its conformational entropy, and suggest a need to consider conformational dynamics in optimizing binding affinities.  相似文献   

16.
In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control.  相似文献   

17.
Ellis JJ  Jones S 《Proteins》2008,70(4):1518-1526
Many protein-RNA recognition events are known to exhibit conformational changes from qualitative observations of individual complexes. However, a quantitative estimation of conformational changes is required if protein-RNA docking and template-based methods for RNA binding site prediction are to be developed. This study presents the first quantitative evaluation of conformational changes that occur when proteins bind RNA. The analysis of twelve RNA-binding proteins in the bound and unbound states using error-scaled difference distance matrices is presented. The binding site residues are mapped to each structure, and the conformational changes that affect these residues are evaluated. Of the twelve proteins four exhibit greater movements in nonbinding site residues, and a further four show the greatest movements in binding site residues. The remaining four proteins display no significant conformational change. When interface residues are found to be in conformationally variable regions of the protein they are typically seen to move less than 2 A between the bound and unbound conformations. The current data indicate that conformational changes in the binding site residues of RNA binding proteins may not be as significant as previously suggested, but a larger data set is required before wider conclusions may be drawn. The implications of the observed conformational changes for protein function prediction are discussed.  相似文献   

18.
Mason AC  Jensen JH 《Proteins》2008,71(1):81-91
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively.  相似文献   

19.
Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号