首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.  相似文献   

2.
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions.The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.  相似文献   

3.
New therapeutic intervention strategies for the treatment of human malignancies are always desired. Approval of bortezomib as a front-line treatment for multiple myeloma highlighted the significance of ubiquitin–proteasome system (UPS) as a promising therapeutic target. However, due to the broad impact of proteasome inhibition, deleterious side effects have been reported with bortezomib treatment. Cullin RING ligases (CRLs)-mediated ubiquitin conjugation process is responsible for the ubiquitin conjugation of 20 % cellular proteins that are designated for degradation through the UPS, most of them are critical proteins involved in cell cycle progression, signaling transduction and apoptosis. Studies have depicted the upstream NEDDylation pathway that controls the CRL activity by regulating the conjugation of an ubiquitin-like-protein NEDD8 to the cullin protein in the complex. A specific pharmaceutical inhibitor of NEDD8 activating enzyme (NAE; E1) MLN4924 was recently developed and has been promoted to Phase I clinical trials for the treatment of several human malignancies. This article summarizes the most recent understanding about the process of NEDD8 conjugation, its relevance for cancer therapy and molecular mechanisms responsible for the potent anti-tumor activity of MLN4924.  相似文献   

4.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

5.
The cullin-RING ubiquitin ligases (CRLs) are the largest family of multi-subunit E3 ligases in eukaryotes, which ubiquitinate protein substrates in numerous cellular pathways. CRLs share a common arched scaffold and a RING domain catalytic subunit, but use different adaptors and substrate receptors to assemble unique E3 machineries. In comparison to the first CRL structure, recent findings have revealed increased complexity in the overall architecture and assembly mode of CRLs, including multi-domain organization, inter-domain flexibility, and subunit dimerization. These features highlight the capacity of CRLs to catalyze protein ubiquitination under distinct cellular contexts and in response to diverse signals. As the first installment of a two-review series, this article will focus on recent advances in our understanding of CRL assembly mechanisms.  相似文献   

6.
7.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.  相似文献   

8.
Cullin-RING ligases (CRLs) compose the largest class of E3 ubiquitin ligases. CRLs are modular, multisubunit enzymes, comprising interchangeable substrate receptors dedicated to particular Cullin-RING catalytic cores. Recent structural studies have revealed numerous ways in which CRL E3 ligase activities are controlled, including multimodal E3 ligase activation by covalent attachment of the ubiquitin-like protein NEDD8, inhibition of CRL assembly/activity by CAND1, and several mechanisms of regulated substrate recruitment. These features highlight the potential for CRL activities to be tuned in responses to diverse cellular cues, and for modulating CRL functions through small-molecule agonists or antagonists. As the second installment of a two-review series, this article focuses on recent structural studies advancing our knowledge of how CRL activities are regulated.  相似文献   

9.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi''s sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies.  相似文献   

10.
蛋白质拟素化是一种类似于泛素化的翻译后修饰,由NEDD8活化酶E1 (NAE)、NEDD8耦联酶E2 (UBE2M或UBE2F)和NEDD8连接酶E3三种酶催化组成的级联反应。Cullin家族蛋白是拟素化修饰的生理性底物,Cullin的拟素化修饰激活Cullin-RING连接酶(CRLs),CRLs是最大一类E3泛素连接酶家族,介导了其中约20%蛋白质的泛素化降解来调节许多生物过程,包括细胞周期调控、DNA损伤修复、细胞生长、代谢、存活、自噬、迁移和免疫逃逸等。去拟素化过程则是通过特异性的去拟素化酶将拟素分子NEDD8从底物蛋白上水解并移除,释放至细胞中以维持拟素化的动态平衡。NEDD8和拟素化修饰的催化酶在多种癌症中高表达或活性上调,导致CRLs的过度激活,催化许多抑癌蛋白质的降解,从而促进肺癌细胞的增殖与存活以及肺肿瘤的发生发展。蛋白质拟素化修饰已被证实是有希望的癌症靶点。同样地,多种去拟素化酶在肺癌中高表达,其改变也与多种恶性肿瘤的发生发展密切相关,亦是潜在的肿瘤治疗重要靶点。本综述主要聚焦于拟素化及去拟素化通路在肺癌细胞中表达水平的改变,如何调节肺癌细胞的生长、存活和肺癌微环境...  相似文献   

11.
The ubiquitin-proteosome system (UPS) is a non-lysosomal proteolysis system involved in the degradation of irrelevant/misfolded intracellular proteins. The protein substrates of this system are tagged by ubiquitin in sequential reactions that target them for proteasome-dependent destruction. In the developing central nervous system, ubiquitin-mediated proteolysis has recently emerged as an important player in the regulation of neural progenitor proliferation, cell specification, neuronal differentiation, maturation, and migration. E3 ubiquitin ligases are crucial components in the UPS because they provide the specificity that determines which substrates are targeted for ubiquitin-dependent proteolysis. In this review, we discuss the molecular mechanisms of the UPS, focusing primarily on the roles of E3 ligases and their substrates in sequential steps of neurogenesis.  相似文献   

12.
The ubiquitin-proteasome system (UPS) is involved in selective targeting of innumerable cellular proteins through a complex pathway that plays important roles in a broad array of processes. An important step in the proteolytic cascade is specific recognition of the substrate by one of many ubiquitin ligases, E3s, which is followed by generation of the polyubiquitin degradation signal. For most substrates, it is believed that the first ubiquitin moiety is conjugated, through its C-terminal Gly76 residue, to an sigma-NH2 group of an internal Lys residue. Recent findings indicate that, for several proteins, the first ubiquitin moiety is fused linearly to the alpha-NH2 group of the N-terminal residue. An important biological question relates to the evolutionary requirement for an alternative mode of ubiquitination.  相似文献   

13.
Frederik Eisele 《FEBS letters》2008,582(30):4143-4146
Protein quality control and subsequent elimination of terminally misfolded proteins occurs via the ubiquitin-proteasome system. Tagging of misfolded proteins with ubiquitin for degradation depends on a cascade of reactions involving an ubiquitin activating enzyme (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). While ubiquitin ligases responsible for targeting misfolded secretory proteins to proteasomal degradation (ERAD) have been uncovered, no such E3 enzymes have been found for elimination of misfolded cytoplasmic proteins in yeast. Here we report on the discovery of Ubr1, the E3 ligase of the N-end rule pathway, to be responsible for targeting misfolded cytosoplasmic protein to proteasomal degradation.  相似文献   

14.
15.
Cullin-RING ligases (CRLs) are the biggest family of multiunit ubiquitin E3 ligases, controlling many biological processes by promoting the degradation of a broad spectrum of proteins associated with cell cycle, signal transduction and cell growth. The dysfunction of CRLs causes a lot of diseases including cancer, which meanwhile offers us a promising approach to cancer therapy by targeting to CRLs. Recent studies have demonstrated that genetic or pharmaceutical inactivation of CRLs often leads to cancer cell death by activating multiple cell-killing pathways including senescence, an emerging anticancer mechanism of therapeutic agents. Here, we summarize the induction of cellular senescence and its mechanism of action, triggered by targeting to specific subunits of CRLs via multiple approaches including siRNA silencing, genetic knockout as well as small molecule inhibitor, exhibiting anticancer effect in vitro and in vivo.  相似文献   

16.
In concert with the ubiquitin (Ub) proteasome system (UPS) the COP9 signalosome (CSN) controls the stability of cellular regulators. The CSN interacts with cullin-RING Ub ligases (CRLs) consisting of a specific cullin, a RING protein as Rbx1 and substrate recognition proteins. The Ub-like protein Nedd8 is covalently linked to cullins and removed by the CSN-mediated deneddylation. Cycles of neddylation and deneddylation regulate CRLs. Apoptotic stimuli cause caspase-dependent modifications of the UPS. However, little is known about the CSN during apoptosis. We demonstrate in vitro and in vivo that CSN6 is cleaved most effectively by caspase 3 at D23 after 2–3 h of apoptosis induced by anti-Fas-Ab or etoposide. CSN6 processing occurs in CSN–CRL complexes and is followed by the cleavage of Rbx1, the direct interaction partner of CSN6. Caspase-dependent cutting of Rbx1 is accompanied by decrease of neddylated proteins in Jurkat T cells. Another functional consequence of CSN6 cleavage is the enhancement of CSN-mediated deneddylating activity causing deneddylation of cullin 1 in cells. The CSN-associated deubiquitinating as well as kinase activity remained unchanged in presence of active caspase 3. The cleavage of Rbx1 and increased deneddylation of cullins inactivate CRLs and presumably stabilize pro-apoptotic factors for final apoptotic steps. Bettina K. J. Hetfeld and Andreas Peth contributed equally.  相似文献   

17.
Cullin-containing E3 ubiquitin ligases in plant development   总被引:8,自引:0,他引:8  
In eukaryotes, the ubiquitin-proteasome system participates in the control of signal transduction events by selectively eliminating regulatory proteins. E3 ubiquitin ligases specifically bind degradation substrates and mediate their poly-ubiquitylation, a prerequisite for their degradation by the 26S proteasome. On the basis of the analysis of the Arabidopsis genome sequence, it is predicted that there are more than 1000 E3 ubiquitin ligases in plants. Several types of E3 ubiquitin ligases have already been characterized in eukaryotes. Recently, some of these E3 enzymes have been implicated in specific plant signaling pathways.  相似文献   

18.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.  相似文献   

19.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

20.
The coupling of cellular growth and division is crucial for a cell to make an accurate copy of itself. Regulated protein degradation by the ubiquitin-proteasome system (UPS) plays an important role in the coordination of these two processes. Many ubiquitin ligases, in particular the Skp1-Cullin-F-box (SCF) family and the Anaphase-Promoting Complex (APC), couple growth and division by targeting cell cycle and metabolic regulators for degradation. However, many regulatory proteins are targeted by multiple ubiquitin ligases. As a result, we are only just beginning to understand the complexities of the proteolytic regulatory network that connects cell growth and the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号