首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Na movement across the plasma membranes of confluent monolayers of monkey kidney epithelial cells (BSC-1) was studied using 22Na+ uptake and efflux techniques in the presence of 10(-4) M ouabain. In the presence of 28 mM bicarbonate, uptake was inhibited by both 10(-3) M amiloride and 10(-3) M 4,4'diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In DIDS-pretreated cells, 10(-3) M amiloride led to a further reduction of 22Na+ uptake, while 10(-5) furosemide was ineffective. DIDS also inhibited sodium efflux, indicating that the DIDS-sensitive pathway mediates both influx and efflux of 22Na+. DIDS-sensitive 22Na+ uptake, as studied in the presence of both 10(-4) M ouabain and 10(-3) M amiloride, was abolished by the absence of bicarbonate, which could not be substituted by other plasma membrane-permeable buffers. In 28 mM HCO3-, DIDS-sensitive uptake of 28 mM Na+ was cis-inhibited by 124 mM Na+, but no significant inhibition by K+ or Li+ was found. DIDS-sensitive 22Na+ uptake was a saturable function of both Na+ concentration (apparent Km between 20 and 40 mM at 28 mM HCO3-) and HCO3- concentration (apparent Km between 7 and 14 mM at 151 mM Na+). Intracellular microelectrode measurements showed that net Na+ transport in the presence of HCO3- is electrogenic, i.e. that there is anion cotransport with Na+. This effect is abolished by 1 mM DIDS. It is concluded that monkey kidney epithelial cells possess a stilbene-sensitive, electrogenic sodium bicarbonate symport, which may play an important role in bicarbonate reabsorption in the mammalian kidney.  相似文献   

2.
The cultured renal cell, an opossum kidney (OK) cell line, which contains several features characteristic of proximal tubular cells, was utilized to examine the direct effects of atrial natriuretic factor (ANF) and cyclic GMP (cGMP) on phosphate uptake. ANF at 2 x 10(-7) M significantly inhibited phosphate uptake by 10.1% of control (P less than 0.01). Incubation of the cells with ANF (10(-8) to 10(-6) M) resulted in an increment of intracellular cGMP in a dose dependent fashion. Exogenous addition of 8-bromo-cGMP (10(-4) M) also significantly inhibited phosphate uptake by 14.6%. These results suggest that ANF directly inhibits phosphate transport in renal proximal tubular cells, probably through stimulation of cGMP production.  相似文献   

3.
Calcitonin receptor-stimulating peptide-1 (CRSP-1) is a peptide recently identified from porcine brain by monitoring the cAMP production through an endogenous calcitonin (CT) receptor in the renal epithelial cell line LLC-PK(1). Here we investigated the effects of CRSP-1 on the ion transport and growth of LLC-PK(1) cells. CRSP-1 inhibited the growth of LLC-PK(1) cells with a higher potency than porcine CT. CRSP-1 enhanced the uptake of (22)Na(+) into LLC-PK(1) cells more strongly than did CT and slightly reduced the (45)Ca(2+) uptake. The enhancement of the (22)Na(+) uptake was abolished by 5-(N-ethyl-N-isopropyl) amiloride, a strong Na(+)/H(+) exchanger (NHE) inhibitor for NHE1, even at a concentration of 1x10(-8)M, although other ion transporter inhibitors did not affect the (22)Na(+) uptake. These results indicate that CRSP-1 enhances the (22)Na(+) uptake by the specific activation of NHE1. Taken together, CRSP-1 is considered to be a new regulator for the urinary ion excretion and renal epithelial cell growth.  相似文献   

4.
The cytochrome P450-dependent monoxygenase pathway represents a major route for the metabolism of arachidonic acid (AA) in the kidney. In turn, AA metabolites have been shown to affect renal electrolyte metabolism, including sodium transport. Specifically AA, 20-HETE and 12-HETE inhibit sodium-dependent (Na+-Pi) uptake into renal culture cells, and both 12-HETE and 14,15 EET have been shown to reduce renin release from renal cortical slices. Since the bulk of Pi transport occurs in the proximal tubule (PT), and the PT is a major site of AA metabolism, we studied the effect of AA and several of its metabolites on Na+-Pi uptake into PT-like opossum kidney (OK) cells. Incubation of OK cells in AA (10(-8) M) resulted in 17% inhibition of Pi uptake. Three metabolites of omega-hydroxylation of AA induced significant decreases in Pi uptake: 19R-HETE (10(-8) M) by 36% (P=0.008), 19S-HETE (10(-8) M) by 24% (P=0.002) and 20-COOH-AA (10(-8) M), a metabolite of 20-HETE, by 25% (P<0.0001). 14,15 EET (10(-8) M), a breakdown product of AA by the epoxygenase pathway, had the greatest effect on Pi uptake in OK cells. It decreased Pi uptake by 47% (P < 0.0001). Addition of the P450 inhibitor, 7-ER (10(-8) M), to OK cells resulted in a significant stimulation (28%) of Pi uptake (P=0.016). These results indicate that these AA metabolites have a significant inhibitory effect on Na+-Pi uptake in OK cells.  相似文献   

5.
We have identified a group of proteins (Mr approximately 70000-80000; pI approximately 5.8-6.4) in giant-toad (Bufo marinus) urinary-bladder epithelial cells whose synthesis appears to be related to aldosterone-stimulated Na+ transport. To define this relationship further, we examined whether submaximal natriferic concentrations of aldosterone induced these proteins and whether spironolactone (a specific mineralocorticoid antagonist in renal epithelia) inhibited their synthesis. Short-circuit current was used to measure Na+ transport and epithelial-cell protein synthesis was detected with high-resolution two-dimensional polyacrylamide-gel electrophoresis and autoradiography. Submaximal natriferic concentrations of aldosterone (1.4 X 10(-8) M) induced the same proteins as maximal concentrations of the hormone (1.4 X 10(-7) M). In contrast, in previous experiments, similar proteins were not induced by subnatriferic concentrations (5.0 X 10(-8) M) of cortisol, a glucocorticoid. A spironolactone/aldosterone molar ratio of 2000:1 was required to inhibit aldosterone-stimulated Na+ transport completely; ratios of 200:1 and 500:1 produced partial inhibition. Concentrations of spironolactone that abolished aldosterone-stimulated Na+ transport also inhibited aldosterone-induced protein synthesis. We conclude that the synthesis of the proteins we have identified is specifically related to activation of the mineralocorticoid pathway.  相似文献   

6.
22Na+ uptake into confluent monolayers of cultured bovine corneal endothelial cells was studied in the presence of ouabain (10(-4)M) to inhibit active sodium extrusion. In bicarbonate saline, uptake was reduced to a similar degree either by amiloride (10(-3)M) or by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) (10(-3)M). A further reduction was obtained with SITS-pretreated cells in the presence of amiloride. SITS-sensitive uptake was further characterized in saline containing both ouabain (10(-4)M) and amiloride (10(-3)M). It was absolutely dependent on bicarbonate, which could not be substituted by other plasma membrane permeable buffers (50 mM acetate or 25 mM glycodiazine). It was a saturable function of both bicarbonate and sodium concentration. Half-maximal fluxes occurred between 3 and 7 mM HCO3 (at 151 mM Na) and between 35 and 60 mM Na (at 28 mM HCO3). Uptake into sodium-depleted cells was reduced as opposed to sodium-rich cells, and SITS-sensitive 22Na+ efflux out of 22Na+-loaded cells into sodium-free medium was less than efflux into sodium saline, indicating trans-stimulation by sodium. The amiloride-sensitive pathway was studied in the absence of bicarbonate to inhibit uptake via the SITS-sensitive pathway. 22Na+ uptake into sodium-depleted cells increased steeply with extracellular pH in the range between pH 6 and 8 and could be largely blocked by 10(-3), but not by 10(-5) M amiloride. It is concluded that bovine corneal endothelial cells possess at least two distinct pathways for sodium uptake, amiloride sensitive 22Na+ fluxes being mediated by a Na+/H+ antiport, while the SITS-sensitive process is probably identical to a bicarbonate-sodium cotransport system postulated earlier from electrophysiological studies.  相似文献   

7.
The activity of Na+-H+, exchange was studied in a cultured cell line derived from opossum kidney (OK cells). The activity of the exchanger was measured either as the amiloride (2 mM) inhibitable 22Na flux in acid-loaded cells, or as the Na+-dependent and amiloride-sensitive recovery of intracellular pH (pHi) from an acid load. Initial rates of tracer flux were analyzed in confluent monolayers while changes in pHi were evaluated in suspensions of trypsinized cells which had been loaded with 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein. Both 8-bromo-cAMP and 8-bromo-cGMP inhibit the activity of the exchanger in a dose-dependent manner. Maximal inhibition due to 8-bromo-cAMP was about 50% and was attained with 0.75 mM of the cyclic nucleotide. Parathyroid hormone (10(-9)-10(-7) M) and atrial natriuretic peptide (10(-7) M) also inhibit the activity of the exchanger. By measuring the rate of Na+-dependent pHi recovery from different starting pHi values, evidence was obtained for a cyclic nucleotide-dependent decrease in the response of Na+-H+ exchange to intracellular acidification. We conclude that cAMP and cGMP are intracellular messengers in the hormone-dependent regulation of Na+-H+ exchange activity in renal epithelial cells.  相似文献   

8.
N Niisato  Y Ito  Y Marunaka 《Life sciences》1999,65(10):PL109-PL114
The Na+ transport in alveolar type II epithelial cells of rat fetal lung was stimulated by cAMP, which is generally thought to act through activation of protein kinase A (PKA). PKA inhibitors (H8, H89 and H7) stimulated amiloride-sensitive Na+ transport in the alveolar type II epithelial cells. H85, an inactive form of H89 as a PKA inhibitor, had also mimicked the stimulatory action of H89 on the Na+ transport. On the other hand, another type of PKA inhibitor, KT5720 or myristoylated PKA inhibitory peptide [14-22] amide, did not stimulate the Na+ transport, but inhibited the Na+ transport unlike H-compounds. These observations suggest that H-compounds act on the Na+ transport depending on the structure.  相似文献   

9.
Recent studies done with fetal and adult sheep and with monolayers of cultured rat alveolar type II cells suggest that active transport of Na+ across the lung epithelium may contribute to liquid absorption from air spaces, an essential component of the normal switch from placental to pulmonary gas exchange at birth. The goals of this work were 1) to study the ontogeny of cation transport in lung epithelial cells derived from fetal, newborn, and adult rabbits and 2) to determine the influence of premature birth, air breathing, labor, and postnatal lung maturation on K+ uptake in these cells. We harvested granular pneumonocytes by tracheal instillation of proteolytic enzymes followed by centrifugation of the dispersed cells over a discontinuous density gradient of metrizamide. This procedure yielded 65-90% granular pneumonocytes, of which more than 80% excluded vital dye. Using freshly isolated cells, we measured uptake of 86Rb+, which mimics transmembrane movement of K+, in the presence or absence of 10(-4) M ouabain and in the presence or absence of 5 X 10(-4) M furosemide or bumetanide. In adult rabbit studies, 86Rb+ uptake was twice as fast in lung epithelial cells (98 +/- 7 nmol X 10(6) cells-1 X h-1) as it was in alveolar macrophages (51 +/- 6 nmol X 10(6) cells-1 X h-1). Ouabain inhibited 55-60% of the uptake by pneumonocytes, and "loop" diuretics inhibited an additional 15-20%. The rate of 86Rb+ uptake in fetal cells was less than 10% (6 +/- 1 nmol X 10(6) cells-1 X h-1) of the rate in adult cells; ouabain inhibited 80-85% of 86Rb+ uptake in fetal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
T Iwata  J Vaughn  E D Frohlich  F E Cole 《Peptides》1991,12(2):301-307
We investigated regulation of atrial natriuretic factor (ANF)-stimulated cellular cGMP accumulation (ANF-s-cGMP) in an ANF-responsive human renal cell line, SK-NEP-1. Dose-response data indicated that the EC50 for ANF(99-126) was 1.1 x 10(-9) M. Brain natriuretic peptide (10(-6) M) increased cGMP to a level indistinguishable from that of ANF (10(-6) M). [Met-(O)]ANF was only half as potent as ANF, and atriopeptin I (10(-6) M) did not increase cGMP over basal levels. Preincubation of SK-NEP-1 cells with ANF, but not atriopeptin I (API), for two hours or longer, caused a concentration-dependent down-regulation of ANF-s-cGMP. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and A23187 and its 4-bromo derivative, calcium ionophores, inhibited ANF-s-cGMP in a dose-dependent manner. A23187 inhibition was calcium dependent and promoted net cGMP degradation. Thirty-six hour preincubation with PMA, a procedure used to down-regulate PKC, abolished acute PMA inhibition of ANF-s-cGMP without having an effect on ANF-s-cGMP or on 4-bromo-A23187 inhibition thereof. These data indicate that PKC activation specifically inhibited ANF-s-cGMP but that PKC was not required for ANF-s-cGMP in SK-NEP-1 cells. Thus structurally related ANF peptides, protein kinase C (PKC) activators, calcium ionophores are potential modulators of ANF-s-cGMP in cells from this human renal cell line.  相似文献   

11.
In this report, we elucidate the role of Na(+)-K+ pump in the regulation of polyamine spermidine (Spd) transport in murine leukemia (L 1210) cells in culture. Ouabain, known to bind extracellularly to the alpha-subunit of the Na(+)-K+ pump, inhibits the pump activity. The L 1210 cells were found to possess ouabain binding sites at 7.5 fmol/10(6) cells. Ouabain significantly inhibited the Spd uptake in a dose-dependent manner. The maximum inhibition of Spd uptake by ouabain was observed beyond 200 microM. Spd transport was inversely correlated with the [3H]ouabain binding to L 1210 cells: an increase in the saturation of ouabain binding to L 1210 cells resulted in a decrease of the Spd uptake process. Treatment of L 1210 cells with protein kinase C activator phorbol esters increased the Spd transport and, also, ouabain-sensitive 86Rb+ uptake, a measure of the activity of the Na(+)-K+ pump. H-7, a protein kinase C inhibitor, significantly inhibited the ouabain-sensitive 86Rb+ uptake by L 1210 cells. Phorbol esters stimulated the level, but not the rate, of 22Na+ influx. Addition of H-7 to L 1210 cells inhibited the 22Na+ influx process. A concomitant phorbol ester-induced increase in 22Na+ influx, [14C]Spd uptake, together with the functioning of Na(+)-K+ pump, indicates the role of the "Na+ cycle" in the regulation of the polyamine transport process.  相似文献   

12.
We obtained evidence that amiloride specifically potentiates 125I-labeled alpha-rat atrial natriuretic peptide (1-28) [atrial natriuretic peptide (ANP)-(99-126); rANP] binding to cerebral capillaries isolated from the rat cerebral cortex. The binding parameters, KD of 173 pM and Bmax of 159 fmol/mg of protein, became 33 pM and 88 fmol/mg of protein, respectively, when 10(-4) M amiloride was added to the incubation medium. When the effect of rANP was investigated on in vitro 22Na+ uptake into isolated cerebral capillaries, 10(-7) M rANP significantly inhibited the uptake in the presence of 1.0 mM ouabain, 1.0 mM furosemide, and 2.0 mM LiCl in the uptake buffer, a finding suggesting a specific inhibitory effect of rANP on amiloride-sensitive Na+ transport. Thus, the possibility that ANPs control amiloride-sensitive Na+ transport at the blood-brain barrier by interacting with specific receptors has to be considered.  相似文献   

13.
Primary rat aortic cells, when treated with arginine vasopressin or depolarizing concentrations of K+, responded to atriopeptin II and 8-bromo-cGMP (8-Br-cGMP) with decreases in intracellular Ca2+ levels. The effects of atriopeptin and 8-Br-cGMP were diminished in cells which had been passaged many times. Low levels of cGMP-dependent protein kinase were present in soluble extracts prepared from the unresponsive cells in later passage compared with extracts from responsive cells. Unresponsive cells, when induced to incorporate cGMP-dependent protein kinase into the cytoplasm using the osmotic lysis procedure of Okada and Rechsteiner (Okada, C. Y., and Rechsteiner, M. (1982) Cell 29, 33-41), responded to atriopeptin and 8-Br-cGMP with reductions in peak Ca2+ levels in response to vasopressin and depolarizing concentrations of K+. Cells which were furnished with affinity-purified antibody to the cGMP-dependent protein kinase after the introduction of the kinase remained unresponsive to the effects of atriopeptin. In addition, antibody furnished to responsive primary cultured cells inhibited the effects of atriopeptin and 8-Br-cGMP on Ca2+ levels. These data suggest that repetitively passaged cultured rat aortic smooth muscle cells lose their responsiveness to cGMP concurrently with the loss of cGMP-dependent protein kinase. Restoration of kinase to the cells results in the restoration of responsiveness to cGMP. Thus cGMP-dependent protein kinase appears to be the mediator of the reduction in Ca2+ levels upon elevation of intracellular cGMP.  相似文献   

14.
Ca2+-induced down-regulation of Na+ channels in toad bladder epithelium   总被引:1,自引:0,他引:1  
Regulation of epithelial Na+ channels was investigated by measuring the amiloride-blockable 22Na+ fluxes in apical membrane vesicles, derived from cells exposed to various treatments. Maximal amiloride-blockable 22Na+ uptake into vesicles was obtained if the cells were preincubated at 25 degrees C in a Ca2+-free [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) solution. Including 10(-5) M Ca2+ in the cell incubating medium blocked nearly all of the amiloride-sensitive flux in vesicles, even though the Ca2+ was removed before homogenization of the cells. This Ca2+-dependent inhibition of Na+ channels could be induced in whole cells only; incubating cell homogenates with Ca2+ had no effect on the transport in vesicles. The dose-response relationships of this effect were measured by equilibrating cell aliquots with various Ca2+-EGTA buffers, preparing membrane vesicles (in the absence of Ca2+ ions), and assaying them for amiloride-sensitive Na+ permeability. It was found that the Ca2+ blockage is highly cooperative (Hill coefficient of nearly 4) and is characterized by an inhibition constant which varies between 6.4 X 10(-8) to 8.15 X 10(-6)M Ca2+. Thus, it is likely that the above process is involved in the physiological control of Na+ transport. The Ca2+-dependent transport changes were not affected by the calmodulin inhibitor trifluoperasine, vanadate (VO3-), phorbol ester, colchicine, cytochalasin B, 3-deazaadenosine, and 8-bromo-cAMP. Vanadyl (VO2+) ions, on the other hand, produced a "Ca2+-like" inhibition of transport.  相似文献   

15.
C6 glioma cells contain two types of receptors for adrenocorticoids. Glucocorticoid (Type II) receptors are present at higher density and mediate increases in glycerol phosphate dehydrogenase and glutamine synthetase activity. The function of mineralocorticoid (Type I) receptors present at low density in C6 cells is unknown. Since mineralocorticoid (Type I) receptors in renal epithelial cells regulate cation transport, we sought to determine whether adrenocorticoid receptors located in glioma cells are similarly linked to electrolyte transporting activity. Occupation of mineralocorticoid receptors in C6 glioma by adrenocorticoids did not alter Na+ or K+ transport, in contrast to their effects on renal epithelial and vascular smooth muscle cells. Occupation of glucocorticoid receptors produced a 20-25% decrease in K+ uptake into C6 cells, but did not alter Na+ influx. Stimulation of Na+ influx with the ionophore monensin produced a large ouabain-sensitive increase in glucose utilization, as measured by 2-deoxyglucose uptake. However, mineralocorticoid receptor occupation did not alter glucose utilization, providing further evidence that these receptors do not influence Na+ transport in C6 cells. These studies provide evidence that mineralocorticoid receptors in glioma cells do not regulate Na+ or K+ transport. Glial glucocorticoid receptors have an inhibitory effect on glial K+ influx, which may contribute to glucocorticoid hormone effects on brain excitability.  相似文献   

16.
The Na-H antiporter of renal-brush border membranes is inhibited by cyclic AMP and stimulated by protein kinase C. The proximal tubule contains guanylate cyclase and is capable of cyclic GMP production. The effect of cGMP on renal Na-H antiporter activity was analyzed in phosphorylated brush border membranes by 22Na uptake in the presence or absence of 1 mM amiloride. 8-Bromo cyclic GMP (1 microM) increased the amiloride-sensitive 22Na uptake in control from 1.26 +/- 0.13 to 1.54 +/- 0.12 nmol/mg/protein/10 sec, P less than 0.01, without altering the amiloride-insensitive component. In the absence of exogenous ATP, cGMP also stimulated the amiloride-sensitive 22Na uptake, which can be explained by the presence of endogenous ATP in concentrations of up to 50 microM in the membranes. In ATP-depleted membrane vesicles, however, cGMP inhibited the amiloride-sensitive 22Na uptake. These data indicate that cGMP acts on the Na-H antiporter by at least two different mechanisms, one of which is ATP dependent. It is likely that cGMP-dependent protein kinase mediates the stimulatory effects seen in the presence of ATP, and the inhibition seen in ATP-depleted membranes results from cGMP direct action on the Na-H antiporter.  相似文献   

17.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

18.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

19.
Sodium-amino acid cotransport by type II alveolar epithelial cells   总被引:2,自引:0,他引:2  
Type II alveolar epithelial cell monolayers have been shown to actively transport sodium (Na+). Coupling to amino acid uptake could be an important mechanism for Na+ entry into these cells. This study demonstrates the presence of such a coupled cotransport mechanism in the plasma membrane of isolated type II cells by use of the nonmetabolizable amino acid analogue alpha-methylaminoisobutyric acid (MeAIB). Transport of MeAIB in 137 mM Na+ is saturable, with the uptake constant (Vmax) equaling 13.9 pmol X mg prot-1 X s-1 and the Michaelis-Menten constant (Km) equaling 0.13 mM. In the presence of Na+, MeAIB is accumulated against a concentration gradient. MeAIB uptake in the absence of Na+ is linear with MeAIB concentration, as expected for simple diffusion. The Hill coefficient for Na+-MeAIB cotransport is 1.11, suggesting a 1:1 stoichiometry. Proline inhibits Na+-MeAIB cotransport, with Ki equaling 0.5 mM. These findings suggest that Na+-amino acid cotransport may be an important pathway for Na+ (and/or amino acid) uptake into type II alveolar epithelial cells.  相似文献   

20.
The effects of leucine- and methionine-enkephalin, opiate peptides, on Ca2+ efflux from cultured bovine adrenal chromaffin cells were examined. These enkephalins stimulated the efflux of 45Ca2+ from cells in a concentration-dependent manner (10(-8) M-10(-6) M). Leucine-enkephalin did not increase the intracellular free Ca2+ level, 45Ca2+ uptake, catecholamine secretion, cAMP level or cGMP level. The peptide-stimulated 45Ca2+ efflux was not inhibited by incubation in Ca2+-free medium, but was inhibited by incubation in Na+-free medium. These results indicate that enkephalins stimulate extracellular Na+-dependent 45Ca2+ efflux from cultured bovine adrenal chromaffin cells, probably by stimulating membrane Na+/Ca2+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号