首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Insulin-like growth factor-I (IGF-I) attenuates GH gene expression by a receptor-mediated mechanism in pituitary cells. We, therefore, isolated neomycin-resistant stable GC cell transfectants over-expressing human IGF-I receptor cDNA (IGFIR-cDNA) cloned in an Rous sarcoma virus-directed expression vector. A transfection control contained the IGFIR-cDNA cloned in the reverse orientation. Southern analysis confirmed incorporation of human IGFIR-cDNA sequences into rat genomic DNA. Immunoprecipitation of metabolically labeled [35S]methionine stably transfected cells revealed a 200-kDa human IGF-I receptor precursor protein. Growth rate and basal GH secretion were not altered in transfected cells. Although transfected and control cells had a similar Kd for IGF-I binding (0.43 and 0.40 nM, respectively), IGF-I-binding sites were induced 17-fold (384,000 vs. 22,000 sites/cell). Treatment of cells with IGF-I (6.5 nM) maximally attenuated GH secretion by 80% compared to 40% attenuation in control cells (P less than 0.0001). Maximal suppression of GH in transfectants occurred within 15 h of treatment, and GH secretion by control cells was only maximally suppressed after 42 h. The ED50 of IGF-I suppression of GH secretion in transfectants after 15 h was 0.5 nM. These results demonstrate that transfectants overexpressing human IGF-I receptor are hyperresponsive to exogenous IGF-I. These data indicate that IGF-I receptor number plays an important role in mediating the signal transduction of IGF-I to the GH gene.  相似文献   

3.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
In order to investigate the action of leptin on early follicular growth, preantral follicles, 95-115 microm in diameter were mechanically isolated from the ovaries of BDF1 hybrid immature (11-day-old) and adult (8-wk-old) mice, and cultured for 4 days in vitro. Follicular growth was assessed by daily changes in follicular diameter and by the amount of estradiol and immunoreactive (IR)-inhibin released into the culture medium at Day 4. Preantral follicles from immature mice showed a significant development in follicular growth as a result of stimulation by GH (1 mIU/ml), insulin-like growth factor (IGF)-I (100 ng/ml) + FSH (100 mIU/ml), and GH (1 mIU/ml) + FSH (100 mIU/ml). Although leptin at concentrations of 1-1000 ng/ml did not have any significant effect on follicular growth stimulated by IGF-I or GH, it significantly inhibited follicular growth in a dose-related manner when follicles were stimulated by IGF-I + FSH and GH + FSH, respectively, suggesting that leptin attenuated the additive effect of FSH. On the other hand, preantral follicles from adult mice were cultured in the presence of FSH, and FSH-dependent follicular growth was inhibited by leptin in a dose-related manner. Because FSH stimulates cAMP production, we investigated the involvement of cAMP in the inhibitory mechanisms of leptin. Preantral follicles from immature and adult mice were cultured in the presence of either 8-Br-cAMP or forskolin. Both 8-Br-cAMP and forskolin significantly increased follicular diameter and hormone secretion in both immature and adult mice. However, 8-Br-cAMP and forskolin-stimulated follicle growth and hormone secretion were significantly inhibited in immature mice by coadministration of leptin, whereas growth of preantral follicles from adult mice was not inhibited by addition of leptin to cultures. These results indicate that leptin causes an inhibitory effect on the early follicular development of both immature and adult mice, but the inhibitory mechanisms of leptin are different.  相似文献   

6.
7.
We have analyzed the effects of a variety of hormones on activity of the rat GH (rGH), human GH, (hGH), and bovine GH (bGH) promoters. After transient transfection of rat pituitary tumor cells, all three promoters are induced by addition of 8-bromo-cAMP. Sequences required for the cAMP responsiveness of the hGH and rGH promoter lie within 183 base pairs of the mRNA start site. Although the rGH promoter is thyroid hormone (T3) responsive in this system, a construct containing 2.7 kilobases of the hGH promoter 5'-flanking sequences is not. Since we also found that the bGH promoter is T3 responsive in these cells, the hGH results are not likely to be due to a species specific factor required for induction in rat pituitary cells. The hGH promoter is weakly induced by dexamethasone whereas the rGH promoter does not respond to glucocorticoids. The hGH and rGH promoters are not responsive to TRH. These results illustrate the potential heterogeneity in hormonal responses of the same gene in different species.  相似文献   

8.
It is known that growth hormone (GH) plays an important role in growth and development.Additionally, emerging evidence suggest that it also influences hypothalamic-pituitary-gonadal function. We have found that GH from different species has different effects in mice. In rodents, human GH (hGH) binds to both GH and prolactin (PRL) receptors; it has both somatotrophic and lactotrophic effects. Since PRL has a profound effect on neuroendocrine function, the results obtained from hGH treatment or from transgenic animals expressing the hGH gene reflect PRL-like effects of this hormone. However, bovine GH (bGH) is purely somatogenic and therefore the effects of bGH represent the function of the natural GH produced in rodents. Furthermore, our studies in mice and rats have shown that not all effects of GH are stimulatory and the duration of exposure of the hypothalamo-hypophyseal-gonadal system to GH might influence the secretions of gonadotropins and gonadal steroids. In humans, excess productions of GH in acromegaly and GH resistance in Laron syndrome adversely affect reproduction. Similarly, it has been demonstrated that in transgenic mice expressing various GH genes, in insulin-like growth factor-I (IGF-I) gene-knockout mice, in GH receptor gene-disrupted (GHR-KO) mice, and in Ames dwarf mice the onset of puberty and/or fertility is altered. Therefore, excess or subnormal secretion of GH can affect reproduction. We have shown that the hypothalamic-pituitary functions are affected in transgenic mice expressing the GH genes, Ames dwarf mice and in GH receptor gene knockout mice. The majority of the GH effects are mediated via IGF-I and the aforementioned effects may be due to the GH-induced IGF-I secretion or due to the absence of this peptide production. It is important to realize that the syntheses and actions of IGF binding proteins are controlled by IGF-I. Furthermore, some IGF binding proteins can inhibit IGF-I action. Therefore, the concentrations of IGF binding proteins and the ratio of these binding proteins and IGF-I within the body might play a pivotal role in modulating IGF-I effects on the neuroendocrine-gonadal system.  相似文献   

9.
The role of cAMP/protein kinase A (PKA)- and tyrosine kinase (TK)-dependent intracellular mechanisms in mediating the action of porcine growth hormone (GH) on insulin-like growth factor I (IGF-I) secretion by porcine ovarian granulosa cells was studied. It was observed that GH-induced stimulation of IGF-I secretion was accompanied by an increase in cAMP production. The stimulation of PKA by the addition of either a cAMP agonist or a phosphodiesterase inhibitor to the medium increased IGF-I release by the cells, indicating a direct stimulation of IGF-I release by cyclic nucleotides. Moreover, the stimulatory effect of GH on IGF-I was completely suppressed by the addition of the PKA blocker Rp-cAMPS. Neither TK blocker altered the basal IGF-I level, but both strongly suppressed the GH-induced increase in IGF-I accumulation. Taken together, these findings suggest that cAMP/PKA- and/or TK-dependent pathways may be involved in the mediation of GH action on IGF-I release by porcine granulosa cells.  相似文献   

10.
11.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

12.
13.
In order to determine whether growth hormone (GH) exerts a direct effect on osteoblasts, in vitro and in vivo immunocytological studies were carried out on newborn rat calvaria and a clonal osteoblast-like cell line (MC3T3-E1) isolated from newborn mouse calvaria. After exposure to human growth hormone (hGH) or 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), a significant increase in alkaline phosphatase activity was observed in MC3T3-E1 cells. Simultaneous exposure of MC3T3-E1 cells to hGH and 10 nM 1,25(OH)2D3 showed a synergistic effect of the two hormones on this activity. The optimal dose of hGH was 0.1 nM. An immunocytological procedure was performed on ultrathin frozen sections from 7-day-old rat calvaria and MC3T3-E1 cells cultured with hGH. GH-like immunoreactivity was observed in both cases. In calvaria, endogenous GH-like immunoreactivity was localized at the same ultrastructural level (plasma membrane, cytoplasmic and nuclear matrices) as exogenous GH-like immunoreactivity in MC3T3-E1 cells. Following the initial step of binding to the plasma membrane, GH may be internalized in the cytoplasmic matrix and nucleus. In situ hybridization revealed the presence of mRNA coding for GH receptor in calvaria cells. The density of these receptors seemed to be lower in osteoblasts than in hepatocytes. In MC3T3-E1 cells, hGH induced a dose-dependent secretion of insulin-like growth factor 1. In conclusion, these results indicate that GH may act directly on osteoblasts.  相似文献   

14.
1. Chick liver cells were incubated in unsupplemented medium (control), or medium supplanted with either 1 microgram/ml pituitary derived chicken growth hormone (GH), 50 ng/ml recombinant human insulin like growth factor-I (IGF-I), or 1 microgram growth hormone/ml and 50 ng insulin like growth factor-I/ml (GH + IGF-I). 2. GH supplementation stimulated acetate incorporation into liver cell lipid. Low density lipoprotein (LDL) lipid secretion was increased quantitatively by GH. 3. Cells incubated with IGF-I incorporated more acetate into lipid and secreted more lipid as VLDL and HDL than controls. 4. A metabolic antagonism between GH and IGF-I was evident with respect to lipogenesis. 5. Neither GH nor IGF-I altered, quantitatively, cell protein synthesis or apoprotein secretion.  相似文献   

15.
The human growth hormone (hGH) transient assay system described here is based on the expression of hGH directed by cells transfected with hGH fusion genes. Levels of secreted hGH in the medium, measured by a simple radioimmunoassay, are proportional to both levels of cytoplasmic hGH mRNA and the amount of transfected DNA. The system is extremely sensitive, easy to perform, and is qualitatively different from other transient expression systems in that the medium is assayed and the cells themselves are not destroyed. The hGH transient assay system is appropriate for analyses of regulation of gene expression and was utilized here to investigate the effect of the simian virus 40 enhancer on the herpes simplex virus thymidine kinase promoter and the effect of zinc on the mouse metallothionein-I promoter. The expression of hGH can also be used as an internal control to monitor transfection efficiency along with any other transient expression system. All cell types tested thus far (including AtT-20, CV-1, GC, GH4, JEG, L, and primary pituitary cells) were able to secrete hGH into the medium.  相似文献   

16.
The GH dependence of somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) and insulin like growth factor II (IGF-II) mRNAs was investigated by Northern blot hybridizations of polyadenylated RNAs from liver, pancreas, and brain of normal rats, untreated hypophysectomized rats, and hypophysectomized rats 4 h or 8 h after an ip injection of human GH (hGH). Using a 32P-labeled human Sm-C/IGF-I cDNA as probe, four Sm-C/IGF-I mRNAs of 7.5, 4.7, 1.7, and 1.2 kilobases (kb) were detected in rat liver and pancreas but were not detectable in brain. In both liver and pancreas, the abundance of these Sm-C/IGF-I mRNAs was 8- to 10-fold lower in hypophysectomized rats than in normal rats. Within 4 h after injection of hGH into hypophysectomized animals, the abundance of liver and pancreatic Sm-C/IGF-I mRNAs was restored to normal. A human IGF-II cDNA was used as a probe for rat IGF-II mRNAs which were found to be very low in abundance in rat liver and showed no evidence of regulation by GH status. In pancreas, IGF-II mRNA abundance was below the detection limit of the hybridization procedures. The brain contained two IGF-II mRNAs of 4.7 and 3.9 kb that were 5-fold lower in abundance in hypophysectomized rats than in normal rats. These brain IGF-II mRNAs were not, however, restored to normal abundance at 4 or 8 h after ip hGH injection into hypophysectomized animals. To investigate further, the effect of GH status on abundance of Sm-C/IGF-I and IGF-II mRNAs in rat brain, a second experiment was performed that differed from the first in that hypophysectomized rats were given an injection of hGH into the lateral ventricle (intracerebroventricular injection) and a rat Sm-C/IGF-I genomic probe was used to analyze Sm-C/IGF-I mRNAs. In this experiment, a 7.5 kb Sm-C/IGF-I mRNA was detected in brain polyadenylated RNAs. The abundance of the 7.5 kb mRNA was 4-fold lower in hypophysectomized rats than in normal rats and was increased to 80% of normal within 4 h after icv administration of hGH to hypophysectomized animals. As in the first experiment, the abundance of the 4.7 and 3.9 kb brain IGF-II mRNAs was lower than normal in hypophysectomized rats. Brain IGF-II mRNAs were increased to 50% of normal in hypophysectomized rats given an icv injection of hGH but within 8 h after the injection rather than at 4 h as with Sm-C/IGF-I mRNAs.  相似文献   

17.
Biochemical assessment of growth hormone (GH) status is required in both suspected GH deficiency and GH excess. GH secretion can either be measured through investigation of the pituitary or by monitoring markers that change as a consequence of GH action on its target tissues. The two most widely used and, to date, best validated biochemical parameters are immunoassay measurement of either human GH (hGH) or insulin-like growth factor (IGF)-I. The fundamental difference between measurement of hGH and IGF-I is that the first reflects GH secretion while the second reflects GH action. However, because GH secretion is pulsatile in nature, random blood sampling for determination of hGH levels is only minimally informative. Analytical methods for measuring GH and IGF-I show considerable between-method variability. Since these parameters are used in establishing diagnoses and in monitoring GH-related diseases, the endocrinologist should be aware of the specifications and limitations of the analytical methods available.  相似文献   

18.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

19.
20.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号