首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since bivalve mussels are able to graze heavily on bacteria, in this paper it is hypothesized that when mussels are cultured with fish, the filtering efficiency of the mussels will keep the bacterial population below a certain threshold and thus assist in reducing the risk of bacterial disease outbreaks. The ability of the filter‐feeding bivalve mussel Pilsbryoconcha exilis to control Streptococcus agalactiae was tested in a laboratory‐scale tilapia culture system. Juvenile Nile tilapia (Oreochromis niloticus), the bivalve mussel as well as the bacteria were cultured at different combinations using four treatments: treatment‐1: mussel and bacteria but no fish, treatment‐2: tilapia and mussel but no bacteria, treatment‐3: tilapia and bacteria but no mussel, and treatment‐4: tilapia, mussels, and bacteria. All treatments were run in three replicates; stocking rates were 10 tilapia juveniles; five mussels; and about 3.5 × 105 colony forming units (CFU) ml?1 of bacteria in 50‐L aquaria with 40‐L volume. The mussel reduced the bacterial population by 83.6–87.1% in a 3‐week period whereas in the absence of the mussel, the bacterial counts increased by 31.5%. Oresence of the mussel also resulted in significantly higher growth and lower mortality of tilapia juveniles than when the mussel was absent. The results of this experiment suggest that the freshwater mussel P. exilis could control the population of S. agalactiae in a laboratory‐scale tilapia culture system. Future studies should focus on the dynamic interactions among fish, mussels, and bacteria as well as on how input such as feed and other organic materials affect these interactions.  相似文献   

2.
The current study investigated the exposure of the Mediterranean mussel (Mytilus galloprovincialis) to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L-1 of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L-1 of both contaminants and Mix. Hydrogen peroxide (H2O2) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on M. galloprovincialis and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.  相似文献   

3.
Clearance rate (CR), absorption efficiency (AE), respiration rate, excretion rate and scope for growth (SFG) were investigated in the green-lipped mussel Perna viridis upon exposure to predatory crabs, Thalamita danae, that had been either starved or maintained on diets with P. viridis or shrimp tissue. The CR and SFG were significantly lower when the mussels were exposed to starved T. danae or those fed with mussels. The differences were observed immediately after the mussels were exposed to the cues (Day 0) and 7 days later. The AE, however, was significantly different among treatments on Day 0, with the highest efficiency being obtained for mussels exposed to crabs maintained on shrimp and followed by the control without any predator cues. Results showed that P. viridis was able to discriminate between predators on different diets and adjust physiological responses according to the level of perceived risk, with growth reduced at higher risks.  相似文献   

4.
In order to investigate the feasibility of using ultraviolet (UV) irradiation to prevent the invasive Asian mussel, Limnoperna fortunei, from colonizing components of the cooling systems of industrial and power plants, the mobility and mortality of its larvae were assessed after exposure to different doses of UVC (λ = 254 nm) in laboratory conditions. Total (100%) mortality was achieved with a dose of 149 mJ cm?2 at 23?°C and 103 mJ cm?2 at 25.8?°C. Immediately after exposure, larvae were alive but had reduced mobility. The proportion of active larvae increased after 24 h, but fell again at 48 and 72 h to levels similar to those immediately after exposure. The highest mortality rates were always recorded at the last observation, 72 h after exposure. These results indicate that the larvae of L. fortunei are highly sensitive to UVC, suggesting that UV irradiation has the potential to control fouling by this mussel when the water is relatively clear. However, application of UV-based technologies in plants that use cooling water from water bodies with high loads of suspended solids (eg the Paraná-Uruguay basin, with ca 160 mg l?1 of suspended solids and absorbance values around 0.255) is unlikely to be effective without prior filtration of the water.  相似文献   

5.
Filter feeding in mussels is a secondary adaptation where the gills have become W‐shaped and greatly enlarged, acting as the mussel filter–pump. Water pumping and particle capture in the blue mussel, Mytilus edulis, have been studied over many years. Here, we give a short status of the present understanding of ciliary structure and function of the mussel filter–pump, supplemented with new photo‐microscope and scanning electron microscopy (SEM) pictures of gill preparations. Pumping rate (filtration) and pressure to maintain flow have been extensively studied so the power delivered by the mussel pump to the water flow is known (1.1% of total respiratory power), but the actual cost based on gill respiration is much higher (19%), implying that the cost of maintaining of the large gill pump is considerable and that only relatively little energy can be saved by stopping or reducing the activity of the water‐pumping cilia so that continuous feeding with a ‘minimal scaled’ pump is cheaper than discontinuous feeding with a correspondingly larger pump. According to the present view, the pump proper is the beating lateral cilia (lc) on the gill filaments and particle capture is accomplished by the action of laterofrontal cirri (lfc) transferring particles from the main water current to the frontal gill filament currents driven by frontal cilia (fc). Unexplained aspects include retention efficiency according to particle size and the role of pro‐laterofrontal cilia (p‐lfc) placed between the lfc and fc. The structure of cilia and the mode of ciliary beating have been re‐examined in this study by new high‐resolution light and scanning electron microscopy of isolated gill preparations exposed to serotonin (5‐HT) stimulation which can activate the lc and lfc at low concentrations (10?6 M), but removes the lfc from the interfilament canals at higher concentrations (10?5 M).  相似文献   

6.
Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton   总被引:1,自引:0,他引:1  
This study investigated the effects of copper oxide nanoparticles (CuO NPs) on the growth and development of transgenic cotton harboring the Ipt gene, which encodes isopentenyl transferase (Ipt). Three concentrations of CuO NPs were evaluated: 10, 200, and 1000 mg·L-1, each with three replicates. The height and the root length were 26.91% and 42.80% decreased after 10-day exposure with 1000 mg·L-1 CuO NPs, respectively.In addition, less abundant on root hairs and lower in shoot biomass of Ipt-cotton when compared with the control group. The growth of Ipt-cotton was not affected by 10 mg·L-1 CuO NPs, but a high concentration of CuO NPs promoted the absorption of Fe and Na into roots, and inhibited the production of phytohormones in Ipt-cotton. The CuO NPs increased the concentration of iPA in shoots, which can delay senescence. The extent of the increase in iPA in response to CuO NPs should be relative to the amount of Ipt immobilized onto the NPs in the plant tissue. To our knowledge, this is the first study to evaluate the phytotoxicity of CuO NPs to Ipt-transgenic cotton. These results establish a baseline for further research on the effects of nanoparticles on transgenic crops harboring the Ipt gene.  相似文献   

7.
The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO?>?CuO?>?Co3O4?>?NiO?>?Fe2O3, TiO2, while CuO?>?ZnO?>?NiO?>?Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.  相似文献   

8.
The prawn Macrobrachium sintangense is likely to be subjected to occasional exposure to combined metal and saline stressors in its natural environment. This research evaluated the acute toxicity (96?h LC50) of cadmium (Cd) on the prawn M. sintangense, with respect to the osmoregulatory capacity (OC) of prawns and to document histological changes in the gills after exposure to sublethal Cd concentrations at different salinities. The 96?h LC50 of Cd to M. sintangense decreased with increasing salinity. The 96?h LC50 values were 89.12 (72.53–109.50), 681.26 (554.20–837.46) and 825.37 (676.99–1006.27) μg CdL?1 at 0, 10 and 20 ppt, respectively. The OC of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at10 ppt decreased significantly compared with that of control prawns exposed to 0 and 10 ppt respectively. Swelling, hyperplasia and necrosis of gill lamellae resulting in the loss of marginal canals were observed in the gills of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at 10 ppt for 7?days.  相似文献   

9.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

10.
In this study, we examined the long-term effects of copper oxide nanoparticles (CuO NPs) on the production and properties of EPS and the resulting variations in surface physicochemical characteristics of biofilms in a sequencing batch biofilm reactor. After exposure to 50 mg/L CuO NPs for 45 days, the protein (PRO) and polysaccharide (PS) contents in loosely bound EPS (LB-EPS) decreased as the production of LB-EPS decreased from 34.4 to 30 mg TOC/g EPS. However, the production of tightly bound EPS (TB-EPS) increased by 16.47 % as the PRO and PS contents increased. The content of humic-like substances (HS) increased significantly, becoming the predominant constituent in EPS with the presence of 50 mg/L CuO NPs. Furthermore, the results of three-dimensional excitation-emission fluorescence spectra confirmed the various changes in terms of the LB-EPS and TB-EPS contents after exposure to CuO NPs. Fourier transform infrared spectroscopy showed that the –OH and –NH2 groups of proteins in EPS were involved in the reaction with CuO NPs. Moreover, the chronic exposure to CuO NPs induced a negative impact on the flocculating efficiency of EPS and on the hydrophobicity and aggregation ability of microbial cells. The PRO/PS ratios of different EPS fractions were consistent with their hydrophobicities (R 2 >0.98) and bioflocculating efficiencies (R 2 >0.95); however, there was no correlation with aggregation ability. Additionally, the presence of bovine serum albumin (BSA) prevented the physical contact between CuO NPs and EPS as a result of NP aggregation and electrostatic repulsion.  相似文献   

11.
The fauna associated with hard bottom mussel beds along the exposed Pacific coast of Chile was examined. The abundance of adult (>10 mm body length) purple mussels Perumytilus purpuratus varied between 32 and 75 individuals per 50 cm2, and their biomass between 4.8 and 8.6 g AFDW per 50 cm2 at eight sampling sites between Arica (18°S) and Chiloé (42°S). At all sampling sites, the associated fauna was dominated by suspension-feeding organisms (cirripeds, spionid and sabellid polychaetes, a small bivalve) followed by grazing peracarids and gastropods. Predators and scavengers also reached high abundances while deposit- and detritus-feeding organisms were of minor importance. The majority of organisms associated with these hard bottom mussel beds feed on resources obtained from the water column or growing on the mussels rather than on materials deposited by the mussels. This is in contrast to the fauna associated with mussel beds on soft bottoms, which comprises many species feeding on material accumulated by mussels (faeces and pseudofaeces) and deposited within the mussel bed. Many of the organisms dwelling between mussels both on hard bottoms and on soft bottoms have direct development, but organisms with pelagic development also occur abundantly within mussel beds. We propose that species with direct development are disproportionately favoured by the structurally complex habitat with diverse interstitial spaces between the mussels, which provides ample shelter for small organisms. We conclude that mussels on hard-bottoms primarily provide substratum for associated fauna while mussels on soft bottoms provide both substratum and food resources. Electronic Publication  相似文献   

12.
《Biomarkers》2013,18(7):473-479
Inhaled endotoxin (lipopolysaccharide, LPS) initiates an inflammatory response and leads to the expression of CR3 (CD11b/CD18) receptors on polymorphonuclear leukocytes (PMNs). We determined if PMN activation in nasal lavage fluid (NLF) is a possible biomarker of occupational endotoxin exposure. Seven subjects exposed to endotoxin provided NLF samples that were split into three aliquots (negative control – 1?M nicotinamide; sham; positive control – 11 ηg of exogenous LPS) and PMN activation was measured using a chemiluminometer. Differences in mean PMN activation were apparent, negative control: 548?±?15.65 RLU 100 μl?1; sham: 11469?±?2582 RLU 100 μl?1; positive control: 42026?±?16659 RLU 100 μl (n?=?7; p <0.05). This technique shows promise as a diagnostic method for measuring upper airway LPS exposure.  相似文献   

13.
Myosmine is a minor tobacco alkaloid with widespread occurrence in the human diet. Myosmine is genotoxic in human cells and is readily nitrosated and peroxidated yielding reactive intermediates with carcinogenic potential. For biomonitoring of short-term and long-term exposure, analytical methods were established for determination of myosmine together with nicotine and cotinine in plasma, saliva and toenail by gas chromatography–mass spectrometry (GC/MS). Validation of the method with samples of 14 smokers and 10 non-smokers showed smoking-dependent differences of myosmine in toenails (66?±?56 vs 21?±?15?ng?g?1, p?<0.01) as well as saliva (2.54?±?2.68 vs 0.73?±?0.65?ng ml?1, p <0.01). However, these differences were much smaller than those with nicotine (1971?±?818 vs 132?±?82?ng g?1, p <0.0001) and cotinine (1237?±?818 vs <35?ng?g?1) in toenail and those of cotinine (97.43?±?84.54 vs 1.85?±?4.50?ng ml?1, p <0.0001) in saliva. These results were confirmed in plasma samples from 84 patients undergoing gastro-oesophageal endoscopy. Differences between 25 smokers and 59 non-smokers are again much lower for myosmine (0.30?±?0.35 vs 0.16?±?0.18?ng?ml?1, p <0.05) than for cotinine (54.67?±?29.63 vs 0.61?±?1.82?ng ml?1, p <0.0001). In conclusion, sources other than tobacco contribute considerably to the human body burden of myosmine.  相似文献   

14.
Abstract

The present study was conducted to assess the magnitude and health impacts of As in drinking water. Drinking water samples (n?=?60) were collected from twenty different sites of Shiekhupura District (Pakistan). Health risk assessment through average daily dose (ADD), hazard indices (HI), hazard quotient (HQ), carcinogenic risk (CR), and cancer indices (CI) for dermal and oral exposure were determined. Results revealed that As concentration ranged from 2 to 900?µg?L?1 in water samples, which was significantly greater than the safe limit of As (10?µg?L?1) in water. Health risk assessment of As showed that ADD (1.07E?02–9.85E?04), HQ (1.06E+01–9.85E+00), and CR (1.60E?02–9.85E?04) for oral exposure and ADD (1.03E?05–9.69E?06), HQ (1.19E?02–7.96E?03), and CR (1.11E?05–8.98E?05) for dermal exposure which were exceeded the toxic risk index value. Comparison of the two exposure pathways indicated that the oral exposure is much higher risk than the dermal contact. Both values of HI and CI were greater than WHO limit. It is concluded that residents of study area are at higher risk of As induced diseases and carcinogenicity.  相似文献   

15.
Since its appearance in 2006 in a freshwater section of the Rhine–Meuse estuary (Hollandsch Diep, The Netherlands), the non-indigenous quagga mussel has displayed a rapid range expansion in Western Europe. However, an overview characterising the spread and impacts of the quagga mussel in this area is currently lacking. A literature study, supplemented with field data, was performed to gather all available data and information relating to quagga mussel dispersal. Dispersal characteristics were analysed for rate and direction and in relation to hydrological connectivity and dispersal vectors. To determine ranges of conditions suitable for quagga mussel colonisation, physico-chemical characteristics of their habitats were analysed. After its initial arrival in the freshwater section of the Rhine-Meuse estuary and River Danube, the quagga mussel demonstrated a rapid and continued range expansion in Western Europe. Quagga mussels have extended their non-native range to the network of major waterways in The Netherlands and in an upstream direction in the River Rhine (Germany), its tributaries (rivers Main and Moselle) and the River Meuse (Belgium and France). The calculated average quagga mussel dispersal rate in Europe was 120 km year?1 (range 23–383 km year?1). Hydrological connectivity is important in determining the speed with which colonisation occurs. Dispersal to water bodies disconnected from the freshwater network requires the presence of a suitable vector e.g. pleasure boats transferred over land. Upstream dispersal is primarily human mediated through the attachment of mussels to watercraft. The relative abundance of quagga mussel to zebra mussel has greatly increased in a number of areas sampled in the major Dutch rivers and lakes and the rivers Main and Rhine and the Rhine–Danube Canal leading to a dominance shift from zebra mussels to quagga mussels. However, evidence for displacement of the zebra mussel is limited due to the lack of temporal trends relating to the overall density of zebra and quagga mussel.  相似文献   

16.
The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥4.5 cm shell length, to 0.1–2 mg l−1 ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l−1, while large mussels accumulated Zn four times faster than small mussels at 2 mg l−1. Mussels exposed to 2 mg l−1 ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l−1) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters.  相似文献   

17.
All known rivers in Scotland with recent records of freshwater pearl mussels Margaritifera margaritifera were surveyed in 2013–2015 using a standard methodology. Freshwater pearl mussel populations were classed as: (i) apparently extinct in 11 rivers, (ii) not successfully recruiting in 44 rivers, and (iii) evidence of recent successful recruitment in 71 rivers. On a regional basis, a high proportion of extant populations were located in North and West Scotland. In all regions extant populations were characterised by low pearl mussel densities, with 97 of 115 extant Scottish populations defined as ‘rare’ (0.1–0.9 mussels per 1 m 2) or ‘scarce’ (1.0–9.9 mussels per 1 m 2). Only 18 Scottish rivers now hold pearl mussel populations in densities that are considered to be ‘common’ (10–19.9 mussels per 1 m 2) or ‘abundant’ (>20 mussels per 1 m 2). Based on survey evidence, the number of apparently extinct pearl mussel populations in Scottish rivers is now 73. The decline is particularly pronounced in the West Highlands and Western Isles strongholds. The key threats are: (i) pearl fishing, (ii) low host fish densities, (iii) pollution/water quality, (iv) climate change and habitat loss, (v) hydrological management/river engineering and (vi) ‘other factors’, such as non-native invasive species. Over the last 100 years this endangered species has been lost from much of its former Holarctic range. Scotland’s extant M. margaritifera populations continue to be of international importance, but their continued decline since the first national survey in 1998 is of great concern.  相似文献   

18.
Abstract

The effects of two prominent copper oxide nanoparticles (CuO-NP and Cu2O-NP), with the oxidation state of Cu++ (cupric) and Cu+ (cuprous), on Candida albicans were evaluated. CuO-NP and Cu2O-NP were synthesized and characterized by XRD, FESEM, HR-TEM and Zeta potential. At sub-MIC (50?µg ml?1), both cupric and cuprous oxide NPs prevented yeast-to-hyphae switching and wrinkling behaviour in C. albicans. The mechanism for the antifungal action of the two NPs differed; CuO-NP significantly elicited reactive oxygen species, whereas membrane damage was more pronounced with Cu2O-NP. Real time PCR analysis revealed that CuO-NP suppressed the morphological switching of yeast-to-hyphae by down-regulating cph1, hst7 and ras1 and by up-regulation of the negative regulator tup1. In comparison, Cu2O-NP resulted in down-regulation of ras1 and up-regulation of the negative regulators nrg1 and tup1. Between the two NPs, CuO exhibited increased antifungal activity due to its stable oxidation state (Cu++) and its smaller dimensions compared with Cu2O-NP.  相似文献   

19.
Abstract Comparison of Limnoperna fortunei numbers and biomass in screened (5, 15 and 40 mm) and unscreened cages deployed for 18 months in the lower Paraná delta indicates that predators harvest 26–79% (numbers), or 20–85% (biomass) of the mussel population. Predation impact decreases with mussel size. On average, 6 kg of whole live mussel × m−2 × year−1 (0.36 g of dry mussel tissue × m−2 × day−1) were eliminated from the unscreened cages. Cages with 15 and 40 mm screens lost between 1 and 2 kg × m−2 × year−1. Aquatic mammals, birds, and especially fish, are probably the main consumers of large mussels. Small L. fortunei are most probably eaten by fish and also by several invertebrates, including crustaceans, leeches and gastropods. It is suggested that L. fortunei intercepts a significant fraction of the organic carbon that the Paraná‐Uruguay rivers flush into the ocean, locally boosting numbers of benthophagous animals, deposit feeders and, indirectly, higher level predators. Our results indicate that only 15 years after its first introduction in South America this invasive species is very actively consumed by local predators, but predatory suppression of the mussel seems very unlikely. Comparisons with the effects reported for the zebra mussel (Dreissena polymorpha) in Europe and North America suggest that L. fortunei is consumed more actively and that its negative impact on the local fauna is more restricted. These differences are attributed to the fact that while D. polymorpha feeds chiefly on plankton, a limited resource, L. fortunei feeds on detrital particulate organic matter, whose supply in these large South American rivers largely exceeds consumption.  相似文献   

20.
Freshwater fouling invertebrate zebra mussels (Dreissena polymorpha) harbor a diverse population of microorganisms in the Great Lakes of North America. Among the indigenous microorganisms, selective species are opportunistic pathogens to zebra mussels. Pathogenicity to zebra mussels by opportunistic bacteria isolated from the mussels was investigated in this study. Among the more than 30 bacteria isolated from temperature-stressed mussels, Aeromonas media, A. veronii, A. salmonicida subsp. salmonicida, and Shewanella putrefaciens are virulent pathogens to juvenile zebra mussels. Inoculation of a bacterial concentration of A. media, A. salmonicida subsp. salmonicida and S. putrefaciens at 107 cells per zebra mussel resulted in 100% mortality within 5 days, and only 64.9% for A. veronii. In contrast, mortality was less than 12.3% following inoculation of a sterile phosphate buffer solution as a control. In addition, mortality was dependent on the size of the pathogen population used in inoculation and the incubation temperature, indicating the close relationship between the bacterial population and subsequent death. On the mussel tissue, a dense microbial population was evident from the moribund mussels viewed with Scanning Electron Microscope (SEM). Opportunistic bacteria invaded and destroyed the D. polymorpha tissue after 7 days of incubation when the bacterial inoculation was larger than 105 per zebra mussel. Our results suggest that mussels are reservoirs of opportunistic pathogenic microorganisms to aquatic organisms and humans and a better understanding of the microbial ecology of the mussels will provide insights to the possible health hazards from these microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号