首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Thirty-nine species and subspecies of the genera Centaurea, Colymbada, Psephellus and Cyanus (all included in Centaurea s.l.) including many rare and endemic taxa of preponderantly Bulgarian distribution have been investigated with Feulgen DNA image densitometry for holoploid and monoploid genome size (C- and Cx-values). Cyanus varies gradually 2.17-fold between 0.74 pg and 1.56 pg (1Cx). In the remaining taxa two major genome size groups are found, which differ about 1.8-fold in Cx-value. Low values occur in Centaurea subgenera Acrolophus, Solstitiaria, Phalolepis (0.77 pg to 0.90 pg, 1Cx) and Jacea (0.95 pg to 1.09 pg, 1Cx), high values in the genera Colymbada (1.65 pg to 1.93 pg, 1Cx) and Psephellus (1.79 pg, 1Cx, in P. marschallianus). Cx-values support a distinction of Colymbada from Centaurea. Genome size variation is discussed with regard to phylogeny, life form (annual versus perennial), polyploidy, chromosome basic numbers, altitude of occurrence and climate, endemism, and rarity.  相似文献   

2.
Twenty‐two chromosome counts are reported in 16 species, four subspecies and two varieties of the genus Centaurea. These are mostly Turkish local endemics of section Cheirolepis, a complicated group from the Eastern clade of the Jacea group. Twenty‐one reports are new. Prevalence of the basic chromosome number x = 9 among the eastern sections of the Jacea group is confirmed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 280–286.  相似文献   

3.
A new species is described here from the Presila in Calabria (S Italy) and named Centaurea calabra. It belongs to Centaurea sect. Phalolepis and is related to the C. deusta group, namely to C. sarfattiana. Taxonomical characteristics, distribution, and ecology of the new Centaurea are also provided.  相似文献   

4.
A new Centaurea L. (Asteraceae) species from Turkey is described and illustrated. Centaurea mersinensis Uysal and Hamzao?lu exists on calcareous slopes in Pinus brutia forests of Ayd?nc?k (Mersin) in southern Anatolia. It belongs to C. sect. Phalolepis (Cass.) DC., and taxonomically its closest relative is C. lycaonica. Diagnostic morphological characters from very similar taxa are provided, and a key is provided that includes related species of sect. Phalolepis from Turkey. The geographical distribution of the new species and relatives of the same section are mapped. The chromosome number of C. mersinensis, 2n = 18, counted in root tips, is also reported and illustrated.  相似文献   

5.
The Iberian Peninsula contains the majority of the Paleartic land slug species of the genus Arion, which exhibits diverse taxonomic problems. The present study investigated Arion taxonomy on the basis of analyses of the mitochondrial ND1 gene and nuclear internal transcribed spacer 1 (ITS1) sequences. The Iberian endemic species were monophyletically clustered in two divergent sister clades. The topotype specimens of Arion lusitanicus and the closely related species Arion nobrei and Arion fuligineus, as well as Arion hispanicus and Arion flagellus, were grouped into an ‘Atlantic’ clade, whereas Arion baeticus, Arion gilvus, Arion anguloi, Arion wiktori and Arion paularensis were included in a ‘Continental–Mediterranean’ clade. Calibration of mutation rate in the ND1 gene suggested that the divergence of these two clades occurred around the Pliocene–Pleistocene boundary, with subsequent speciation events during the Pleistocene. A group of ancestral and divergent endemic species with distribution centred in the Pyrenean mountain range (Arion molinae, Arion lizarrusti, Arion antrhacius and Arion iratii) arose in the Pliocene and survived through the Pleistocene in geographically confined small populations. Arion lusitanicus showed up to be polyphyletic: specimens, sampled outside the geographic range of the topotype in the north‐western Iberian Peninsula, were included in a non‐monophyletic clade together with the widely distributed species Arion ater and Arion rufus. The divergent species with a wide European distribution (Arion subfuscus, Arion hortensis, Arion fagophilus and Arion intermedius) were located in basal positions in all topologies. The evolutionary history of these slug species (highly sensitive to climatic factors, with capacity for both outcrossing and selfing, and with low dispersal ability) appears to have been moulded by Pliocene–Pleistocene climate events and by the rugged topography of southern Europe, giving rise to repeated cycles of population isolation during periods of glaciation alternating with interglacial expansions limited by geographic barriers.  相似文献   

6.
Aim In this paper we investigate the evolutionary history of the Eurasian green woodpecker (Picus viridis) using molecular markers. We specifically focus on the respective roles of Pleistocene climatic oscillations and geographical barriers in shaping the current population genetics within this species. In addition, we discuss the validity of current species and subspecies limits. Location Western Palaearctic: Europe to western Russia, and Africa north of the Sahara. Methods We sequenced two mitochondrial genes and five nuclear introns for 17 Eurasian green woodpeckers. Multilocus phylogenetic analyses were conducted using maximum likelihood and Bayesian algorithms. In addition, we sequenced a fragment of the cytochrome b gene (cyt b, 427 bp) and of the Z‐linked BRM intron 15 for 113 and 85 individuals, respectively. The latter data set was analysed using population genetic methods. Results Our phylogenetic results support the monophyly of Picus viridis and suggest that this taxon comprises three allopatric/parapatric lineages distributed in North Africa, the Iberian Peninsula and Europe, respectively. The North African lineage split from the Iberian/European clade during the early Pleistocene (1.6–2.2 Ma). The divergence event between the Iberian and the European lineages occurred during the mid‐Pleistocene (0.7–1.2 Ma). Our results also support a post‐glacial range expansion of these two lineages from distinct refugia located in the Iberian Peninsula and possibly in eastern Europe or Anatolia, which led to the establishment of a secondary contact zone in southern France. Main conclusions Our results emphasize the crucial role of both Pleistocene climatic oscillations and geographical barriers (Strait of Gibraltar, Pyrenees chain) in shaping the current genetic structure of the Eurasian green woodpecker. Our molecular data, in combination with diagnosable plumage characters, suggest that the North African green woodpecker (Levaillant’s woodpecker) merits species rank as Picus vaillantii (Malherbe, 1847). The two European lineages could be distinguished by molecular and phenotypic characters over most of their respective geographical ranges, but they locally exchange genes in southern France. Consequently, we prefer to treat them as subspecies (P. viridis viridis, P. viridis sharpei) pending further studies.  相似文献   

7.
In this paper, we investigated a set of narrow endemics of Centaurea subsect. Phalolepis from the mountains of South Italy (mainly Calabria and Salento), segregated from the widespread species Centaurea deusta, using microsatellite (SSR) markers. The goal was to analyse the genetic makeup (levels and structure) of C. deusta and the segregated species and verify whether genetic clusters were in agreement with current classification of the species. With C. deusta, we also carried out an ecological niche modelling (ENM) analysis to check its potential distribution under present climatic conditions and to project it to the Last Glacial Maximum (LGM). As also found in former studies with subsect. Phalolepis in Greece and Turkey using the same set of SSRs, genetic diversity for the segregated Italian species was higher than expected for narrow endemics with small populations. Genetic clusters, however, were not correlated with the described species and did not support the segregation of the purported narrow endemics from a widely defined C. deusta. The results of the ENM indicate that the Adriatic Sea was a migration corridor for C. deusta at the LGM.  相似文献   

8.
The latest publications on Sarcocornia taxonomy and phylogeny recognize six taxa in this genus on the Iberian Peninsula: S. perennis, S. fruticosa, S. alpini, S. alpini subsp. carinata, S. hispanica, and S. pruinosa. The present study represents a comprehensive revision of the different taxa in the Sarcocornia genus present in Western Mediterranean Europe by means of morphological, micromorphological and phylogenetic internal transcribed spacer (ITS) analysis. Morphological and micromorphological data were studied from Sarcocornia samples from 113 populations in coastal salt marshes and inland salt pans in Portugal, France, Spain and Italy. Sixteen new ITS sequences were obtained from Mediterranean Sarcocornia species and analysed together with previous reported data. Published karyological, ecological and biogeographical data from Western Mediterranean Europe were also reviewed. The results indicate the presence of a new species, S. lagascae, found growing in coastal Mediterranean areas of the Iberian Peninsula. The species S. fruticosa was found to be absent from the Iberian territories.  相似文献   

9.
The genus Pseudamnicola comprises a group of tiny springsnails inhabiting several continental and insular regions of the Mediterranean basin. Given the limited dispersal capabilities of these animals, it is difficult to explain the wide distribution range of the genus and, more specifically, its presence in isolated habitats, such as on islands. Thus, to investigate the process(es) that may explain these distribution patterns, we morphologically re‐described and genetically analysed the six Pseudamnicola (Pseudamnicola) species occurring in the Iberian Peninsula and the nearby Balearic Islands. Genetic relationships were explored by sequencing two mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and one nuclear (28S rRNA) gene in 19 populations. Our morphological study confirmed the presence of previously described species, whereas our phylogenetic results revealed three lineages within the subgenus: one clade grouping the species from Minorca Island with an Iberian Peninsula species, a second clade grouping the three species from Majorca Island, and a third clade that consists of a single species, which occurs in both the Iberian Peninsula and Ibiza Island. Calculated speciation times show that the cladogenetic events involving the insular species seem to have occurred after the current conformation of the Balearic Islands (c. 20 Mya). Therefore, the speciation process may have been related to subsequent transmarine colonizations, probably during the Messinian Salinity Crisis, and the Pleistocene glaciations when landmass corridors connected the islands with the continent. © 2014 The Linnean Society of London  相似文献   

10.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

11.
12.
Taxonomic complexity has hindered partitioning the genusCentaurea into natural subdivisions, even though it has long been recognized as an unwieldy, artificial assemblage. Most of the remaining difficulties center in theCentaurea jacea group, whose taxa share a common advanced type of pollen. Because it comprises half the species of the genusCentaurea, as well as five other disputed genera previously segregated fromCentaurea (Chartolepis, Cheirolepis, Cnicus, Grossheimia andTomanthea), theCentaurea jacea group is a significant taxonomic challenge. Newer molecular approaches are useful for resolving complex relationships because they provide more precise inferences of evolutionary relationships than traditional morphological characters. Sequences of the Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA were analyzed for a comprehensive sample of this group. Results indicated that theCentaurea jacea group is monophyletic and includes the segregated genera, but not two other genera (Oligochaeta andZoegea), whose inclusion in theCentaurea jacea group was doubtful. In addition to pollen morphology, the ITS phylogeny is also supported by karyological evidence and by good correlation with biogeographic distribution of the species. The monophyly of theCentaurea jacea group suggests that a natural delimitation ofCentaurea that minimizes nomenclatural changes is possible, but only if a new type of the genus is designated.  相似文献   

13.
《Annals of botany》2001,87(4):503-515
Taxonomic complexity has hindered the partitioning of the artificial genus Centaurea, even though it has long been recognized as a polyphyletic assemblage. On the basis of morphology, pollen type, karyology and DNA sequence analysis, previous workers have defined five informal groups in the genus (Acrocentron,Centaureasensu stricto , Cyanus, Jacea and Psephellus). However, the precise delimitation of these groups and their relationships remain largely unknown. Moreover, although some informal groups have been established among the rest of the subtribe (Amberboa, Carthamus and Stemmacantha), many genera cannot be classified in any group. Newer molecular approaches are essential for resolving these problems. Sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the chloroplast gene mat K were analysed for a comprehensive sample of the whole subtribe, with the aim of clarifying the delimitation and the phylogeny of the groups of the Centaureinae. Results largely confirm the suggested informal entities as natural groups, with some interesting changes of placement of some genera, especially in the Acrocentron and the Stemmacantha groups. Our results confirm that the sections of Centaurea with Dealbata pollen type should be classified as a different genus, Psephellus. In addition to morphology and suggested pollen type evolution, the ITS and mat K phylogenies are also supported by karyological evidence. Our results confirm that the natural delimitation of Centaurea that minimizes nomenclatural changes is possible only if a new type of the genus is designated.  相似文献   

14.
Morphological data has provided a basis for the hypothesis that three taxa belonging to the Caulerpa racemosa complex occur in the Mediterranean Sea: var. turbinata–uvifera, var. lamourouxi, and the `invasive variety'. In order to test this hypothesis and to determine the origin of the `invasive variety', the transcribed spacer ITS1–ITS2 and an 18S ribosomal DNA (rDNA) intron were analysed from 16 isolates of Caulerpa racemosa. The `invasive variety' shows intraindividual polymorphism for both types of sequences. The ITS1–ITS2 data confirm that the three morphological varieties of C. racemosa from the Mediterranean Sea are distinct taxonomic units. The 18S intron data suggest that the new `invasive variety' could be a recent hybrid between var. turbinata–uvifera and an unknown tropical strain. Incongruence between the phylogenetic tree computed from ITS1–ITS2 regions and the 18S intron indicates that homogenization processes of concerted evolution have run at different rates.  相似文献   

15.
A phylogenetic survey of representatives from all New World and several Old World supraspecific groupings of Cleome, as well as from the closely related Podandrogyne and Polanisia, was conducted based on separate analysis of nuclear ribosomal ITS sequences and of morphological characters. Parsimony analysis of the molecular data recognized this group of cleomoid taxa as a strongly supported monophyletic lineage. Podandrogyne was imbedded within a highly supported Andinocleome clade, whereas Polanisia was placed as a member of a North American/Old World Cleome s. l. clade but with low support. The ITS data also indicated the sequential divergence of several basal Old World (sects. Cleome, Gymnogonia, Ranmanissa and Rutidosperma) and North American (subg. Physospermon, sect. Peritoma) lineages followed by more recent splittings of Central and South American lineages (the Andinocleome (sects. Pterosperma and Rimosperma) group, and sects. Melidiscus and Tarenaya). The morphological data showed extensive homoplasy and did not resolve the phylogeny of these cleomoids, although the cladistic analysis distinguished two poorly supported (subg. Eucleome and sect. Tarenaya) clades. Despite this, several sets of morphological and chromosomal secondary synapomorphies served to characterize the main sectional clades recovered in the molecular tree. Based on the strong support of the Cleome + Podandrogyne + Polanisia clade and the insufficient resolution and low support of the basal branches of this tree, and on the inherent homoplasy and unsatisfactory resolution of the morphological diagnostic traits used to characterize these taxa, a reunification of the three cleomoid genera under a large genus Cleome s. l. would be advisable. A biogeographical interpretation of our molecular phylogeny indicated and earlier origin of the ancestral Cleome lineages in the Old World, followed by colonization of North America and then a subsequent expansion towards central and South American with more recent secondary radiations in these subcontinents.  相似文献   

16.
Aim The angiosperm genus Cryptotaenia (family Apiaceae, tribe Oenantheae) exhibits an anomalous distribution pattern, with five of its eight species being narrow endemics geographically isolated from their presumed relatives. We examined the monophyly of the genus and ascertained the phylogenetic placements of its constituent members in order to explain their distribution patterns. Location Eastern North America, eastern Asia, the Caucasus, southern Italy, Macaronesia and Africa. Methods In total, 173 accessions were examined for nuclear rDNA ITS sequence variation, representing nearly all major lineages of Apiaceae subfamily Apioideae and seven species of Cryptotaenia. Sampling of tribes Oenantheae, Scandiceae and Pimpinelleae was comprehensive. Phylogenetic analyses included Bayesian, maximum parsimony and neighbour‐joining methods; biogeographical scenarios were inferred using dispersal–vicariance analysis (diva ). Results Cryptotaenia is polyphyletic and includes three distant lineages. (1) Cryptotaenia sensu stricto (C. canadensis, C. japonica, C. flahaultii and C. thomasii) is maintained within tribe Oenantheae; C. canadensis and C. japonica, representing an eastern North American–eastern Asian disjunction pattern, are confirmed to be sister species. (2) Cryptotaenia elegans, endemic to the Canary Islands, is placed within Scandiceae subtribe Daucinae along with two woody endemics of Madeira, Monizia edulis and Melanoselinum decipiens. The phylogeny of these Canarian and Madeiran endemics is unresolved. Either they constitute a monophyletic sister group to a clade comprising some Mediterranean and African species of Daucus and their relatives, or they are paraphyletic to this clade. The herbaceous/woody genus Tornabenea from Cape Verde, once included in Melanoselinum, is not closely related to the other Macaronesian endemics but to Daucus carota. (3) The African members of Cryptotaenia (C. africana, C. calycina and possibly C. polygama) comprise a clade with some African and Madagascan umbellifers; this entire clade is sister group to Eurasian Pimpinella. Main conclusions Elucidating the phylogeny of the biogeographically anomalous Cryptotaenia sensu lato enabled hypotheses on the biogeography of its constituent lineages. Cryptotaenia sensu stricto exhibits a holarctic distribution pattern, with its members occurring in regions that were important glacial refugia. The genus probably originated in eastern Asia and from there dispersed to Europe and North America. For the Macaronesian endemic species –C. elegans, M. edulis and M. decipiens–diva reconstructs either a single dispersal event to Macaronesia from the Mediterranean/African region, or a single dispersal followed by a back‐dispersal to the mainland. The radiation of Tornabenea from Cape Verde followed a second dispersal of Daucinae to Macaronesia. Woodiness in Melanoselinum/Monizia and Tornabenea, therefore, is a derived and independently acquired trait. The African members of Cryptotaenia are derived from an ancestor arriving from the Middle East.  相似文献   

17.
The yellowmouth barracuda, Sphyraena viridensis, is a Mediterranean native species whose exact distribution is uncertain due to a long‐term taxonomic confusion with Sphyraena sphyraena. Records of this species in the Mediterranean Sea have recently increased, and a northwards expansion of its distribution has been suggested. Three mtDNA regions, namely cytochrome oxidase I, cytochrome b and the control region, were analysed in S. viridensis samples from Italian coastal regions to provide molecular markers useful in species identification, in phylogenetic analysis and in detecting the distribution of genetic variability of the yellowmouth barracuda in this area. The data clearly distinguish S. viridensis from S. sphyraena and the other four (one native and three Lessepsian) Mediterranean Sphyraena species and identify two clearly distinct lineages that diverged during the Pleistocene but are currently panmictic in the investigated area. Both lineages retain signatures of historical population expansion. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 635–641.  相似文献   

18.
In this paper, 31 mostly endemic and locally distributed Turkish Centaurea taxa belonging to Centaurea and Phalolepis sections were examined in terms of their karyomorphology. The basic chromosome number for all of the studied species was concurringly determined as 9(x = 9) for both sections, excluding C. hierapolitana. We also determined tetraploid and hexaploid species in spite of many species having diploid chromosome numbers. Twelve chromosome counts are reported for the first time and most of the karyotyping analyses are described for the first time via the KAMERAM program. The karyotypes had a predominance of metacentric (m) chromosomes. However, in the karyotyping of six taxa, submetacentric (sm) chromosomes were dominant. Five quantitative asymmetric indices were used to evaluate karyological features of the species. A meaningful dendrogram was carried out to assess the karyotype-symmetry conditions and describe the karyotyping relationships between different taxa.  相似文献   

19.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号