首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactive effects of atmospheric CO(2) concentration ([CO(2)]), soil nutrient availability and soil nutrient spatial distribution on the structure and function of plant assemblages remain largely unexplored. Here we conducted a microcosm experiment to evaluate these interactions using a grassland assemblage formed by Lolium perenne, Plantago lanceolata, Trifolium repens, Anthoxanthum odoratum and Holcus lanatus. Assemblages exhibited precise root foraging patterns, had higher total and below-ground biomass, and captured more nitrogen when nutrients were supplied heterogeneously. Root foraging responses were modified by nutrient availability, and the patterns of N capture by interactions between nutrient distribution, availability and [CO(2)]. Greater above-ground biomass was observed under elevated CO(2) only under homogeneous conditions of nutrient supply and at the highest availability level. CO(2) interacted with nutrient distribution and availability to determine foliar percentage N and below : above-ground biomass ratios, respectively. Interactions between nutrient distribution and CO(2) determined the relative contribution to above-ground biomass of four of the species. The responses of dominant and subordinate species to [CO(2)] were dependent on the availability and distribution of nutrients. Our results suggest that soil nutrient distribution has the potential to influence the response of plant species and assemblages to changes in [CO(2)] and nutrient availability.  相似文献   

2.
大气CO2浓度升高对农田土壤微生物及其相关因素的影响   总被引:16,自引:3,他引:16  
李杨  黄国宏  史奕 《应用生态学报》2003,14(12):2321-2325
综述了大气CO2浓度升高条件下,农田土壤微生物区系、土壤呼吸、土壤微生物生物量;植物-微生物共生体--内生菌根、根瘤及其与农田土壤微生物活动相关因素发生的变化。该方面的研究虽然受实验条件限制,在国内外开展研究的持续时间较短,但现有的研究表明,大气CO2浓度升高主要通过影响植物生长而间接影响农田土壤微生物活性。  相似文献   

3.
The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.  相似文献   

4.
Kandeler  E.  Tscherko  D.  Bardgett  R.D.  Hobbs  P.J.  Kampichler  C.  Jones  T.H. 《Plant and Soil》1998,202(2):251-262
We investigate the response of soil microorganisms to atmospheric CO2 and temperature change within model terrestrial ecosystems in the Ecotron. The model communities consisted of four plant species (Cardamine hirsuta, Poa annua, Senecio vulgaris, Spergula arvensis), four herbivorous insect species (two aphids, a leaf-miner, and a whitefly) and their parasitoids, snails, earthworms, woodlice, soil-dwelling Collembola (springtails), nematodes and soil microorganisms (bacteria, fungi, mycorrhizae and Protista). In two successive experiments, the effects of elevated temperature (ambient plus 2 °C) at both ambient and elevated CO2 conditions (ambient plus 200 ppm) were investigated. A 40:60 sand:Surrey loam mixture with relatively low nutrient levels was used. Each experiment ran for 9 months and soil microbial biomass (Cmic and Nmic), soil microbial community (fungal and bacterial phospholipid fatty acids), basal respiration, and enzymes involved in the carbon cycling (xylanase, trehalase) were measured at depths of 0–2, 0–10 and 10–20 cm. In addition, root biomass and tissue C:N ratio were determined to provide information on the amount and quality of substrates for microbial growth.Elevated temperature under both ambient and elevated CO2 did not show consistent treatment effects. Elevation of air temperature at ambient CO2 induced an increase in Cmic of the 0–10 cm layer, while at elevated CO2 total phospholipid fatty acids (PLFA) increased after the third generation. The metabolic quotient qCO2 decreased at elevated temperature in the ambient CO2 run. Xylanase and trehalase showed no changes in both runs. Root biomass and C:N ratio were not influenced by elevated temperature in ambient CO2. In elevated CO2, however, elevated temperature reduced root biomass in the 0–10 cm and 30–40 cm layers and increased N content of roots in the deeper layers. The different response of root biomass and C:N ratio to elevated temperature may be caused by differences in the dynamics of root decomposition and/or in allocation patterns to coarse or fine roots (i.e. storage vs. resource capture functions). Overall, our data suggests that in soils of low nutrient availability, the effects of climate change on the soil microbial community and processes are likely to be minimal and largely unpredicatable.  相似文献   

5.
Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods. Received: 15 February 1997 / Accepted: 20 May 1997  相似文献   

6.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

7.
Increased temperatures and concomitant changes in vegetation patterns are expected to dramatically alter the functioning of northern ecosystems over the next few decades. Predicting the ecosystem response to such a shift in climate and vegetation is complicated by the lack of knowledge about the links between aboveground biota and belowground process rates. Current models suggest that increasing temperatures and rising concentrations of atmospheric CO(2) will be partly mitigated by elevated C sequestration in plant biomass and soil. However, empirical evidence does not always support this assumption, as elevated temperature and CO(2) concentrations also accelerate the belowground C flux, in many cases extending to increased decomposition of soil organic matter (SOM) and ultimately resulting in decreased soil C stocks. The mechanism behind the increase has remained largely unknown, but it has been suggested that priming might be the causative agent. Here, we provide quantitative evidence of a strong coupling between root exudation, SOM decomposition, and release of plant available N caused by rhizosphere priming effects. As plants tend to increase belowground C allocation with increased temperatures and CO(2) concentrations, priming effects need to be considered in our long-term analysis of soil C budgets in a changing environment. The extent of priming seems to be intimately linked to resource availability, as shifts in the stoichiometric nutrient demands of plants and microorganisms will lead to either cooperation (resulting in priming) or competition (no priming will occur). The findings lead us on the way to resolve the varying response of primary production, SOM decomposition, and release of plant available N to elevated temperatures, CO(2) concentrations, and N availability.  相似文献   

8.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

9.
大气CO2浓度和温度升高对作物生理生态的影响   总被引:22,自引:9,他引:22  
论述了大气CO2浓度和温度升高下的植物生长,光合作用,产量以及水分养分利用效率等方面的研究进展,未来高CO2浓度下,光合作用速率有不同程度的提高,生物量和产量增加;气孔导度降低,水分利用效率(WUE)提高,一般地上部分和根系尤其是细根生物量增加,凋落物量随之增加,C/N比率提高,植物残体的腐解速率降低,CO2浓度升高后,会给根际微生物带来更多的底物,从而提高了微生物活性,加速养分的矿化过程,改善植物的养分状况。  相似文献   

10.
《植物生态学报》2017,41(3):325
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

11.
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

12.
Despite knowledge of the interaction between climate change factors significant uncertainty exists concerning the individual and interactive effects of elevated carbon dioxide (eCO2) and elevated temperature (eT) on the soil microbiome and function. Here we examine the individual and interactive effects of eCO2 and eT on tree growth, soil respiration (Rsoil), biomass, structural and functional composition of microbial community, nitrogen (N) mineralisation and N availability in a whole tree chamber experiment. Eucalyptus globulus plants were grown from seedling to ca. 10 m tall for 15 months in a nutrient-poor sandy soil under ambient and elevated (+ 240 ppm) atmospheric CO2 concentrations combined with ambient or elevated temperatures (+ 3 °C) in a full factorial design. Plant growth was strongly stimulated under eCO2, but eT had little impact on any measured plant property. In contrast, Rsoil was not consistently affected by eCO2 or eT, but correlated strongly with root and leaf biomass. The response of N-mineralisation and nutrient availability to eCO2 and eT varied across time, and available N correlated strongly with plant height. Further, the C:N ratio of the microbial biomass and leaves were both higher under eCeT treatment. However, these functional measures were not significantly linked to either structural or functional diversity of the soil microbiome. Taken together, these results suggest that in this low-nutrient soil, belowground processes are principally driven by aboveground productivity. Our work provides novel insight into mechanisms underlying above- and belowground response to climate change, and the potential to sequester C in a low-nutrient status soil under future climatic conditions may be limited .  相似文献   

13.
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.  相似文献   

14.
Changes in the atmospheric concentration of carbon dioxide ([CO2]), nutrient availability and biotic diversity are three major drivers of the ongoing global change impacting terrestrial ecosystems worldwide. While it is well established that soil nutrient heterogeneity exerts a strong influence on the development of plant individuals and communities, it is virtually unknown how nutrient heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. We conducted a microcosm experiment to evaluate the effect of simultaneous changes in [CO2], nutrient heterogeneity (NH), nutrient availability (NA) and species evenness on the biomass and nutrient uptake patterns of assemblages formed by Lolium perenne, Plantago lanceolata and Holcus lanatus. When the nutrients were heterogeneously supplied, assemblages exhibited precise root foraging patterns, and had higher above‐ and belowground biomass (average increases of 32% and 29% for above‐ and belowground biomass, respectively). Nutrient heterogeneity also modulated the effects of NA on biomass production, complementarity in nitrogen uptake and below: aboveground ratio, as well as those of [CO2] on the nutrient use efficiency at the assemblage level. Our results show that nutrient heterogeneity has the potential to influence the response of plant assemblages to simultaneous changes in [CO2], nutrient availability and biotic diversity, and suggest that it is an important environmental factor to interpret and assess plant assemblage responses to global change.  相似文献   

15.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

16.
大气CO_2浓度升高与森林群落结构的可能性变化   总被引:1,自引:0,他引:1  
大气 CO2 浓度升高所引起的森林生态系统生态稳定性的变化会导致森林在结构和功能上的变动 ,概述了大气 CO2浓度升高和陆地森林生态系统可能性变化之间的相互关系的研究情况。由于大气 CO2 浓度升高出现了额外多的 C,供应 ,讨论了以这些额外多的 C经大气 -植物 -土壤途径的流动走向 ,来研究大气 CO2 浓度的升高 ,与森林结构的相互作用 ,探讨了大气 CO2 浓度升高对森林植物生长、冠层结构、引发的生物量增量的分配、凋落物质量和根质量的变化造成的土壤生态过程的变化、微生物共生体、有机质周转率、营养循环的潜在效应以及气温上升对森林植物产生的可能性影响 ,这些受影响的生物要素和生态过程 ,会引起群落内植物间对资源原有的竞争关系发生变化 ,对资源竞争的格局发生变化最终将会导致森林结构的改变。  相似文献   

17.
UV-B radiation and elevated CO? may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO?. This study investigated UV-B exposure and elevated CO? effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m?2 day?1) and CO? (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO?) a further factor. It was hypothesized that UV-B exposure and elevated CO?would change plant resource allocation, with CO? mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO? to give a greater root biomass. Elevated CO? altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO? did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO? treatments, UV-B modified these CO? responses significantly. These interactions have implications for plant responses to future atmospheric conditions.  相似文献   

18.
Earthworms, arbuscular mycorrhiza fungi (AMF) and roots are important components of the belowground part of terrestrial ecosystem. However, their interacting effects on soil properties and plant growth are still poorly understood. A compartmental experimental design was used in a climate chamber in order to investigate, without phosphorus (P) addition, the single and combined effects of earthworms (Allolobophora chlorotica), AMF (Glomus intraradices) and roots (Allium porrum) on soil structure, nutrient concentration and plant growth. In our experimental conditions, plant roots improved soil structure stability (at the level of macroaggregates) whereas earthworms decreased it. AMF had no effect on soil structure stability but increased P transfer from the soil to the plant and significantly increased plant biomass. Earthworms had no direct influence on P uptake or plant biomass, and the N/P ratio measured in the shoots indicated that P was limiting. Interactions between AMF and earthworms were also observed on total C and N content in the soil and on total root biomass. Their effects varied temporally and between the different soil compartments (bulk soil, rhizosphere and drilosphere). After comparison with other similar studies, we suggest that effects of earthworms and AMF on plant production may depend on the limiting factors in the soil, mainly N or P. Our experiment highlights the importance of measuring physical and chemical soil parameters when studying soil organism interactions and their influence on plant performance.  相似文献   

19.
We constructed a model simulating growth, shoot-root partitioning,plant nitrogen (N) concentration and total non-structural carbohydratesin perennial grasses. Carbon (C) allocation was based on theconcept of a functional balance between root and shoot growth,which responded to variable plant C and N supplies. Interactionsbetween the plant and environment were made explicit by wayof variables for soil water and soil inorganic N. The modelwas fitted to data on the growth of two species of perennialgrass subjected to elevated atmospheric CO2and water stresstreatments. The model exhibited complex feedbacks between plantand environment, and the indirect effects of CO2and water treatmentson soil water and soil inorganic N supplies were important ininterpreting observed plant responses. Growth was surprisinglyinsensitive to shoot-root partitioning in the model, apparentlybecause of the limited soil N supply, which weakened the expectedpositive relationship between root growth and total N uptake.Alternative models for the regulation of allocation betweenshoots and roots were objectively compared by using optimizationto find the least squares fit of each model to the data. Regulationby various combinations of C and N uptake rates, C and N substrateconcentrations, and shoot and root biomass gave nearly equivalentfits to the data, apparently because these variables were correlatedwith each other. A partitioning function that maximized growthpredicted too high a root to shoot ratio, suggesting that partitioningdid not serve to maximize growth under the conditions of theexperiment.Copyright 1998 Annals of Botany Company plant growth model, optimization, nitrogen, non-structural carbohydrates, carbon partitioning, elevated CO2, water stress,Pascopyrum smithii,Bouteloua gracilis, photosynthetic pathway, maximal growth  相似文献   

20.
Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号