首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Base excision repair (BER) is a very important repair mechanism to remove oxidative DNA damage. A major oxidative DNA damage after exposure to ionizing radiation is 7,8-dihydro-8-oxoguanine (8oxoG). 8oxoG is a strong mutagenic lesion, which may cause G:C to T:A transversions if not repaired correctly. Formamidopyrimidine-DNA glycosylase (Fpg), a repair enzyme which is part of BER, is the most important enzyme to repair 8oxoG. In the past years, evidence evolved that nucleotide excision repair (NER), a repair system originally thought to repair only bulky DNA lesions, can also repair some oxidative DNA damages. Examples of DNA damages which are recognized by NER are thymine glycol and abasic sites (AP sites). The main objective of this study is to determine if NER can act as a backup system for the repair of spontaneous and gamma-radiation-induced damages when Fpg is deficient. For that purpose, the effect of a NER-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene was determined, using double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target sequence. Subsequently the DNA was transfected into a fpg(-)uvrA(-) Escherichia coli strain (BH420) and the mutational spectra were compared with the spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105), which were determined in an earlier study. Furthermore, to examine effects which are caused by UvrA-deficiency, and not by Fpg-deficiency, the spontaneous and gamma-radiation-induced mutation spectra of an E. coli strain in which only UvrA is deficient (BH430) were also determined and compared with a wild type E. coli strain (JM105). The results of this study indicate that if only UvrA is deficient, there is an increase in spontaneous G:C to T:A transversions as compared to JM105 and a decrease in A:T to G:C transitions. The gamma-radiation-induced mutation spectrum of BH420 (fpg(-)uvrA(-)) shows a significant decrease in G:C to A:T and G:C to T:A mutations, as compared to BH410 where only Fpg is deficient. Based on these results, we conclude that in our experiments NER is not acting as a backup system if Fpg is deficient. Instead, NER seems to make mistakes, leading to the formation of mutations.  相似文献   

2.
Guibourt N  Boiteux S 《Biochimie》2000,82(1):59-64
The biological relevance of oxidative DNA damage has been unveiled by the identification of genes such as fpg of E. coli or OGG1 of Saccharomyces cerevisiae. Both Fpg and Ogg1 proteins are DNA glycosylases/AP lyases that excise 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) from damaged DNA. Although similar, the enzymatic and biological properties of Fpg and Ogg1 proteins are not identical. Furthermore, the Fpg and Ogg1 proteins do not show significant sequence homologies. In this study, we investigated the ability of the Fpg protein of E. coli to complement phenotypes thought to be due to oxidative DNA damage in Saccharomyces cerevisiae. To express Fpg in yeast, the coding sequence of the fpg gene was placed under the control of a strong yeast promoter in the expression vector pCM190 to generate the pFPG240 plasmid. The Ogg1-deficient yeast strain CD138, ogg1::TRP1, was transformed with pFPG240 and the expression of Fpg was measured. Expression of Fpg in yeast harboring pFPG240 was revealed by efficient release of Me-FapyG and cleavage of 8-OxoG-containing duplexes by cell free protein extracts. The production of the Fpg protein in yeast cells was further demonstrated by immunoblotting analysis using anti-Fpg antibodies. Fpg expression suppresses the spontaneous mutator phenotype of ogg1- yeast for the production of canavanin resistant mutants (CanR) and Lys+ revertants. Fpg expression also restores the capacity of plasmid DNA treated with methylene blue plus visible light (MB-light) to transform the yeast ogg1- rad1- double mutant.  相似文献   

3.
One of the most predominating oxidative DNA damages, both spontaneously formed and after gamma-radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This 8oxoG is a mutagenic lesion because it can mispair with adenine instead of the correct cytosine leading to G:C to T:A transversions. In Escherichia coli (E. Coli) base excision repair (BER) is one of the most important repair systems for the repair of 8oxoG and other oxidative DNA damage. An important part of BER in E. coli is the so-called GO system which consists of three repair enzymes, MutM (Fpg), MutY and MutT which are all involved in repair of 8oxoG or 8oxoG mispairs. The aim of this study is to determine the effect of combined Fpg- and MutY-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum of the lacZalpha gene. For that purpose, non-irradiated or gamma-irradiated double-stranded (ds) M13mp10 DNA, with the lacZalpha gene inserted as mutational target sequence was transfected into an E. coli strain which is deficient in both Fpg and MutY (BH1040). The resulting mutation spectra were compared with the mutation spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105) which were determined in an earlier study. The results of the present study indicate that combined Fpg- and MutY-deficiency induces a large increase in G:C to T:A transversions in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)) as compared to the fpg(-) and the wild type strain. Besides the increased levels of G:C to T:A transversions, there is also an increase in G:C to C:G transversions and frameshift mutations in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)).  相似文献   

4.
The ability to repair DNA damage is likely to play an important role in the survival of facultative intracellular parasites because they are exposed to high levels of reactive oxygen species and nitrogen intermediates inside phagocytes. Correcting oxidative damage in purines and pyrimidines is the primary function of the enzymes formamidopyrimidine (faPy)–DNA glycosylase (Fpg) and endonuclease VIII (Nei) of the base excision repair pathway, respectively. Four gene homologs, belonging to the fpg/nei family, have been identified in Mycobacterium tuberculosis H37Rv. The recombinant protein encoded by M. tuberculosis Rv2924c , termed Mtb-Fpg1, was overexpressed, purified and biochemically characterized. The enzyme removed faPy and 5-hydroxycytosine lesions, as well as 8-oxo-7,8-dihydroguanine (8oxoG) opposite to C, T and G. Mtb-Fpg1 thus exhibited substrate specificities typical for Fpg enzymes. Although Mtb-fpg1 showed nearly complete nucleotide sequence conservation in 32 M. tuberculosis isolates, the region upstream of Mtb-fpg1 in these strains contained tandem repeat motifs of variable length. A relationship between repeat length and Mtb-fpg1 expression level was demonstrated in M. tuberculosis strains, indicating that an increased length of the tandem repeats positively influenced the expression levels of Mtb-fpg1 . This is the first example of such a tandem repeat region of variable length being linked to the expression level of a bacterial gene.  相似文献   

5.
Nitric oxide (NO*) is involved in neurotransmission, inflammation, and many other biological processes. Exposure of cells to NO* leads to DNA damage, including formation of deaminated and oxidized bases. Apurinic/apyrimidinic (AP) endonuclease-deficient cells are sensitive to NO* toxicity, which indicates that base excision repair (BER) intermediates are being generated. Here, we show that AP endonuclease-deficient cells can be protected from NO* toxicity by inactivation of the uracil (Ung) or formamidopyrimidine (Fpg) DNA glycosylases but not by inactivation of a 3-methyladenine (AlkA) DNA glycosylase. These results suggest that Ung and Fpg remove nontoxic NO*-induced base damage to create BER intermediates that are toxic if they are not processed by AP endonucleases. Our next goal was to learn how Ung and Fpg affect susceptibility to homologous recombination. The RecBCD complex is critical for repair of double-strand breaks via homologous recombination. When both Ung and Fpg were inactivated in recBCD cells, survival was significantly enhanced. We infer that both Ung and Fpg create substrates for recombinational repair, which is consistent with the observation that disrupting ung and fpg suppressed NO*-induced recombination. Taken together, a picture emerges in which the action of DNA glycosylases on NO*-induced base damage results in the accumulation of BER intermediates, which in turn can induce homologous recombination. These studies shed light on the underlying mechanism of NO*-induced homologous recombination.  相似文献   

6.
Jain R  Kumar P  Varshney U 《DNA Repair》2007,6(12):1774-1785
Reactive oxygen species produced as a part of cellular metabolism or environmental agent cause a multitude of damages in cell. Oxidative damages to DNA or the free nucleotide pool result in occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA, and failure to replace it with the correct base results in a variety of mutations in the genome. Formamidopyrimidine DNA glycosylase (Fpg/MutM), a functionally conserved repair enzyme initiates the 8-oxoG repair pathway in all eubacteria. DNA in mycobacteria with G+C rich genomes is particularly vulnerable to the oxidative damage. In this study, we disrupted fpg gene in Mycobacterium smegmatis to generate an Fpg deficient strain. The strain showed an enhanced mutator phenotype and susceptibility to hydrogen peroxide. Analyses of rifampicin resistance determining region (RRDR) revealed that, in contrast to Fpg deficient Escherichia coli where C to A mutations predominate, Fpg deficient M. smegmatis shows a remarkable increase in accumulation of A to G (or T to C) mutations. Interestingly, exposure of the mutant to sub-lethal level of hydrogen peroxide results in a major shift towards C to G (or G to C) mutations. Biochemical analysis showed that mycobacterial Fpg; and MutY (which excises misincorporated A against 8-oxoG) possess substrate specificities similar to their counterparts in E. coli. However, the DNA polymerase assays with cell-free extracts showed preferential incorporation of G in M. smegmatis as opposed to an A in E. coli. Our studies highlight the importance and the distinctive features of Fpg mediated DNA repair in mycobacteria.  相似文献   

7.
8.
We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair.  相似文献   

9.
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.  相似文献   

10.
In Escherichia coli, the repair of lethal DNA damage induced by H(2)O(2) requires exonuclease III, the xthA gene product. Here, we report that both endonuclease IV (the nfo gene product) and exonuclease III can mediate the repair of lesions induced by H(2)O(2) under low-iron conditions. Neither the xthA nor the nfo mutants was sensitive to H(2)O(2) in the presence of iron chelators, while the xthA nfo double mutant was significantly sensitive to this treatment, suggesting that both exonuclease III and endonuclease IV can mediate the repair of DNA lesions formed under such conditions. Sedimentation studies in alkaline sucrose gradients also demonstrated that both xthA and nfo mutants, but not the xthA nfo double mutant, can carry out complete repair of DNA strand breaks and alkali-labile bonds generated by H(2)O(2) under low-iron conditions. We also found indications that the formation of substrates for exonuclease III and endonuclease IV is mediated by the Fpg DNA glycosylase, as suggested by experiments in which the fpg mutation increased the level of cell survival, as well as repair of DNA strand breaks, in an AP endonuclease-null background.  相似文献   

11.
12.
Oxidation of guanine in DNA generates 7,8‐dihydro‐8‐oxoguanine (8‐oxoG), an ubiquitous lesion with mutagenic properties. 8‐oxoG is primarily removed by DNA glycosylases distributed in two families, typified by bacterial Fpg proteins and eukaryotic Ogg1 proteins. Interestingly, plants possess both Fpg and Ogg1 homologs but their relative contributions to 8‐oxoG repair remain uncertain. In this work we used Arabidopsis cell‐free extracts to monitor 8‐oxoG repair in wild‐type and mutant plants. We found that both FPG and OGG1 catalyze excision of 8‐oxoG in Arabidopsis cell extracts by a DNA glycosylase/lyase mechanism, and generate repair intermediates with blocked 3′‐termini. An increase in oxidative damage is detected in both nuclear and mitochondrial DNA from double fpg ogg1 mutants, but not in single mutants, which suggests that a single deficiency in one of these DNA glycosylases may be compensated by the other. We also found that the DNA 3′‐phosphatase ZDP (zinc finger DNA 3′‐phosphoesterase) and the AP(apurinic/apyirmidinic) endonuclease ARP(apurinic endonuclease redox protein) are required in the 8‐oxoG repair pathway to process the 3′‐blocking ends generated by FPG and OGG1. Furthermore, deficiencies in ZDP and/or ARP decrease germination ability after seed deteriorating conditions. Altogether, our results suggest that Arabidopsis cells use both FPG and OGG1 to repair 8‐oxoG in a pathway that requires ZDP and ARP in downstream steps.  相似文献   

13.
In the bacterium Escherichia coli, oxidized pyrimidines are removed by two DNA glycosylases, endonuclease III and endonuclease VIII (endo VIII), encoded by the nth and nei genes, respectively. Double mutants lacking both of these activities exhibit a high spontaneous mutation frequency, and here we show that all of the mutations observed in the double mutants were G:C-->A:T transitions; no thymine mutations were found. These findings are in agreement with the preponderance of C-->T transitions in the oxidative and spontaneous mutational databases. The major oxidized purine lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is processed by two DNA glycosylases, formamidopyrimidine DNA glycosylase (Fpg), which removes 8-oxoG opposite C, and MutY DNA glycosylase, which removes misincorporated A opposite 8-oxoG. The high spontaneous mutation frequency previously observed in fpg mutY double mutants was significantly enhanced by the addition of the nei mutation, suggesting an overlap in the substrate specificities between endo VIII and Fpg/MutY. When the mutational specificity was examined, all of the mutations observed were G:C-->T:A transversions, indicating that in the absence of Fpg and MutY, endo VIII serves as a backup activity to remove 8-oxoG. This was confirmed by showing that, indeed, endo VIII can recognize 8-oxoG in vitro.  相似文献   

14.
Base excision repair (BER) is a very important repair mechanism to cope with oxidative DNA damage. One of the most predominating oxidative DNA damages after exposure to ionizing radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This damage is repaired by formamidopyrimidine-DNA glycosylase (Fpg), a DNA glycosylase which is part of BER. Correct repair of 8oxoG is of great importance for cells, because 8oxoG has strong miscoding properties. Mispairing of 8oxoG with adenine instead of cytosine results in G:C to T:A transversion mutations. To determine the effect of a Fpg-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene, double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target, was irradiated with gamma-rays in aqueous solution under oxic conditions. Subsequently, the DNA was transfected into a wild-type Escherichia coli strain (JM105) and an isogenic Fpg-deficient E. coli strain (BH410). Although the overall spontaneous mutation spectra between JM105 and BH410 seemed similar, remarkable differences could be observed when the individual base pair substitutions were viewed. The amount of C to A transversions, which are most probably caused by unrepaired 8oxoG, has increased 3. 5-fold in the spontaneous BH410 spectrum. When the gamma-radiation-induced mutation spectra of JM105 and BH410 were compared, there was even a larger increase of C to A transversions in the BH410 strain (7-fold). We can therefore conclude that the straightforward approach used in this study confirms the importance of Fpg in repair of gamma-radiation-induced damage, and most probably especially in the repair of 8oxoG.  相似文献   

15.
Oxidized bases are removed from DNA of Escherichia coli by enzymes formamidopyrimidine DNA glycosylase (Eco-Fpg) and endonuclease VIII (Eco-Nei) of the same structural family Fpg/Nei. New homologs of these enzymes not characterized earlier have been found in genomes of Actinobacteria. We have cloned and expressed two paralogs (Mtu-Nei2 and Mtu-Fpg2) from 36KAZ and KHA94 isolates of Mycobacterium tuberculosis and studied their ability to participate in DNA repair. Under heterologous expression in E. coli, Mtu-Nei2 decreased the rate of spontaneous mutagenesis in the rpoB gene, whereas Mtu-Fpg2 moderately increased it, possibly due to absence of residues crucially important for catalysis in this protein. Mtu-Nei2 was highly active toward double-stranded DNA substrates containing dihydrouracil residues and apurine-apyrimidine sites and was less efficient in cleavage of substrates containing 8-oxoguanine and uracil residues. These lesions, as well as 8-oxoadenine residues, were also recognized and removed by the enzyme from single-stranded DNA. Fpg and Nei homologs from M. tuberculosis can play an important role in protection of bacteria against genotoxic stress caused by oxidative burst in macrophages.  相似文献   

16.
17.
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.  相似文献   

18.
Abstract We report the identification of an open reading frame in a serogroup B isolate of Neisseria meningitidis that exhibits high nucleotide and predicted amino acid identity with the fpg gene of Escherichia coli , and its product, formamidopyrimidine-DNA glycosylase (Fapy-DNA glycosylase), a DNA repair enzyme. We further show that the meningococcal fpg is co-transcribed with nlaA , encoding a lysophosphatidic acid acyltransferase, and suggest that the DNA repair enzyme may be involved in the regulation of nlaA or its gene product.  相似文献   

19.
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.  相似文献   

20.
Iron ions mediate the formation of lethal DNA damage by hydrogen peroxide. However, when cells are depleted of iron ions by the treatment with iron chelators, DNA damage can still be detected. Here we show that the formation of such damage in low iron conditions is due to the participation of copper ions. Copper chelators can inhibit cell inactivation, DNA strand breakage and mutagenesis induced by hydrogen peroxide in cells pre-treated with iron chelators. The Fpg and UvrA proteins play an important role in the repair of DNA lesions formed in these conditions, as suggested by the great sensitivity of the uvrA and fpg mutant strains to the treatment when compared to the wild type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号