首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Isolator piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), which is related to the lactate dehydrogenase-elevating virus of mice, develop severe hypergammaglobulinemia, lymph node adenopathy, and autoimmune disease. Many of the polyclonally activated B cell clones bear hydrophobic H chain CDR3s (HCDR3s) and are disseminated to most lymphoid tissues. We show in this study that B cells with identical hydrophobic HCDR3s are expressed with all major isotypes in PRRSV-infected piglets (PIPs), explaining why PRRSV-induced hypergammaglobulinemia is seen in all major isotypes. Up to one-third of randomly selected VDJ clones from the respiratory tract of PIPs have hydrophobic HCDR3s exclusively bearing VDJ rearrangements with CDR1, CDR2, and nearly intact DH segments in germline configuration. These HCDR3s are long and D(H)A and D(H)B are exclusively used in reading frame 3. A minimal tripeptide motif containing three hydrophobic amino acids (Leu, Val, and Ile) or any two plus alanine is common to this hydrophobic patch. We propose that PRRSV infection causes generalized Ag-independent B cell activation and hypergammaglobulinemia with biased expansion of a subpopulation of the preimmune repertoire with hydrophobic binding sites that normally disappears during Ag-driven repertoire diversification. Elevated Ig levels in PIP cannot be explained as antiviral Abs; some Igs can account for autoantibodies to dsDNA and Golgi, whereas those with hydrophobic binding sites may account for the Ig aggregates seen in PIPs and lactate dehydrogenase-elevating virus-infected mice. This diversion from normal repertoire development may explain the delayed immune response to PRRSV.  相似文献   

2.
We analyzed 77 nonproductive and 574 productive human V(H)DJ(H) rearrangements with a newly developed program, JOINSOLVER. In the productive repertoire, the H chain complementarity determining region 3 (CDR3(H)) was significantly shorter (46.7 +/- 0.5 nucleotides) than in the nonproductive repertoire (53.8 +/- 1.9 nucleotides) because of the tendency to select rearrangements with less TdT activity and shorter D segments. Using criteria established by Monte Carlo simulations, D segments could be identified in 71.4% of nonproductive and 64.4% of productive rearrangements, with a mean of 17.6 +/- 0.7 and 14.6 +/- 0.2 retained germline nucleotides, respectively. Eight of 27 D segments were used more frequently than expected in the nonproductive repertoire, whereas 3 D segments were positively selected and 3 were negatively selected, indicating that both molecular mechanisms and selection biased the D segment usage. There was no bias for D segment reading frame (RF) use in the nonproductive repertoire, whereas negative selection of the RFs encoding stop codons and positive selection of RF2 that frequently encodes hydrophilic amino acids were noted in the productive repertoire. Except for serine, there was no consistent selection or expression of hydrophilic amino acids. A bias toward the pairing of 5' D segments with 3' J(H) segments was observed in the nonproductive but not the productive repertoire, whereas V(H) usage was random. Rearrangements using inverted D segments, DIR family segments, chromosome 15 D segments and multiple D segments were found infrequently. Analysis of the human CDR3(H) with JOINSOLVER has provided comprehensive information on the influences that shape this important Ag binding region of V(H) chains.  相似文献   

3.
Inaccurate VDJ rearrangements generate a large number of progenitor (pro)-B cells with two nonproductive IgH alleles. Such cells lack essential survival signals mediated by surface IgM heavy chain (muH chain) expression and are normally eliminated. However, secondary rearrangements of upstream VH gene segments into assembled VDJ exons have been described in mice transgenic for productive muH chains, a process known as VH replacement. If VH replacement was independent of muH chain signals, it could also modify nonproductive VDJ exons and thus rescue pro-B cells with unsuccessful rearrangements on both alleles. To test this hypothesis, we homologously replaced the JH cluster of a mouse with a nonproductive VDJ exon. Surprisingly, B cell development in IgHVDJ-/VDJ- mice was only slightly impaired and significant numbers of IgM-positive B cells were produced. DNA sequencing confirmed that all VDJ sequences from muH chain-positive B lymphoid cells were generated by VH replacement in a RAG-dependent manner. Another unique feature of our transgenic mice was the presence of IgH chains with unusually long CDR3-H regions. Such IgH chains were functional and only modestly counter-selected, arguing against a strict length constraint for CDR3-H regions. In conclusion, VH replacement can occur in the absence of a muH chain signal and provides a potential rescue mechanism for pro-B cells with two nonproductive IgH alleles.  相似文献   

4.
5.
V(D)J recombination is essential to produce an Ig repertoire with a large range of Ag specificities. Although NF-kappaB-binding sites are present in the human and mouse IgH, Igkappa, and Iglambda enhancer modules and RAG expression is controlled by NF-kappaB, it is not known whether NF-kappaB regulates V(D)J recombination mechanisms after RAG-mediated dsDNA breaks. To clarify the involvement of NF-kappaB in human V(D)J recombination, we amplified Ig gene rearrangements from individual peripheral B cells of patients with X-linked anhidrotic ectodermal dysplasia with hyper-IgM syndrome (HED-ID) who have deficient expression of the NF-kappaB essential modulator (NEMO/Ikkgamma). The amplification of nonproductive Ig gene rearrangements from HED-ID B cells reflects the influence of the Ikkgamma-mediated canonical NF-kappaB pathway on specific molecular mechanisms involved in V(D)J recombination. We found that the CDR3(H) from HED-ID B cells were abnormally long, as a result of a marked reduction in the exonuclease activity on the V, D, and J germline coding ends, whereas random N-nucleotide addition and palindromic overhangs (P nucleotides) were comparable to controls. This suggests that an intact canonical NF-kappaB pathway is essential for normal exonucleolytic activity during human V(D)J recombination, whereas terminal deoxynucleotide transferase, Artemis, and DNA-dependent protein kinase catalytic subunit activity are not affected. The generation of memory B cells and somatic hypermutation were markedly deficient confirming a role for NF-kappaB in these events of B cell maturation. However, selection of the primary B cell repertoire appeared to be intact and was partially able to correct the defects generated by abnormal V(D)J recombination.  相似文献   

6.
Briney BS  Willis JR  Crowe JE 《PloS one》2012,7(5):e36750
A number of antibodies that efficiently neutralize microbial targets contain long heavy chain complementarity determining region 3 (HCDR3) loops. For HIV, several of the most broad and potently neutralizing antibodies have exceptionally long HCDR3s. Two broad potently neutralizing HIV-specific antibodies, PG9 and PG16, exhibit secondary structure. Two other long HCDR3 antibodies, 2F5 and 4E10, protect against mucosal challenge with SHIV. Induction of such long HCDR3 antibodies may be critical to the design of an effective vaccine strategy for HIV and other pathogens, however it is unclear at present how to induce such antibodies. Here, we present genetic evidence that human peripheral blood antibodies containing long HCDR3s are not primarily generated by insertions introduced during the somatic hypermutation process. Instead, they are typically formed by processes occurring as part of the original recombination event. Thus, the response of B cells encoding antibodies with long HCDR3s results from selection of unusual clones from the na?ve repertoire rather than through accumulation of insertions. These antibodies typically use a small subset of D and J gene segments that are particularly suited to encoding long HCDR3s, resulting in the incorporation of highly conserved genetic elements in the majority of antibody sequences encoding long HCDR3s.  相似文献   

7.
The new antigen receptor (IgNAR) family has been detected in all elasmobranch species so far studied and has several intriguing structural and functional features. IgNAR protein, found in both transmembrane and secretory forms, is a dimer of heavy chains with no associated light chains, with each chain of the dimer having a single free and flexible V region. Four rearrangement events (among 1V, 3D, and 1J germline genes) generate an expressed NAR V gene, resulting in long and diverse CDR3 regions that contain cysteine residues. IgNAR mutation frequency is very high and "selected" mutations are found only in genes encoding the secreted form, suggesting that the primary repertoire is entirely CDR3-based. Here we further analyzed the two IgNAR types, "type 1" having one cysteine in CDR3 and "type 2" with an even number (two or four) of CDR3 cysteines, and discovered that placement of the disulfide bridges in the IgNAR V domain differentially influences the selection of mutations in CDR1 and CDR2. Ontogenetic analyses showed that IgNAR sequences from young animals were infrequently mutated, consistent with the paradigm that the shark immune system must become mature before high levels of mutation accompanied with selection can occur. Nevertheless, also in agreement with the idea that the IgNAR repertoire is entirely CDR3-based, but unlike studies in most other vertebrates, N-region diversity is present in expressed IgNAR clones at birth. During the investigation of this early IgNAR repertoire we serendipitously detected a third type of IgNAR gene that is expressed in all neonatal tissues; later in life its expression is perpetuated only in the epigonal organ, a tissue recently shown to be a (the?) primary lymphoid tissue in elasmobranchs. This "type 3" IgNAR gene still undergoes three rearrangement events (two D regions are "germline-joined"), yet CDR3 sequences were exactly of the same length and very similar sequence, suggesting that "type 3" CDR3s are selected early in ontogeny, perhaps by a self-ligand.  相似文献   

8.
VlambdaJlambda rearrangements obtained from genomic DNA of individual IgM(+) B cells from human fetal spleen were analyzed. A nonrandom pattern of lambda gene rearrangements that differed from the adult Vlambda repertoire was found. The Vlambda distal genes 8A and 4B were absent from the nonproductive fetal repertoire, whereas 2E and 3L were overrepresented and 1B was underrepresented in the productive fetal repertoire. Positive selection of the Vlambda gene, 2E, along with Vlambda rearrangements employing homologous VlambdaJlambda joins were observed in the fetal, but not in the adult Vlambda repertoire. Overrepresentation of Jlambda distal cluster C genes rearranging to the Vlambda distal J segment, Jlambda7, in both productive and nonproductive fetal repertoires suggested that receptor editing/replacement was more active in the fetus than in adults. Numerous identical VlambdaJlambda junctions were observed in both the productive and nonproductive repertoire of the fetus and adult, but were significantly more frequent in the productive repertoire of the fetus, suggesting expansion of B cells expressing particular lambda-light chains in both stages of development, with more profound expansion in the fetal repertoire. Notably, B cells expressing identical lambda-light chains expressed diverse heavy chains. These data demonstrate that three mechanisms strongly influence the shaping of the human fetal lambda-chain repertoire that are less evident in the adult: positive selection, receptor editing, and expansion of B cells expressing specific lambda-light chains. These events imply that the expressed fetal repertoire is shaped by exposure to self Ags.  相似文献   

9.
The frequent occurrence of stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences among unrelated cases with chronic lymphocytic leukemia (CLL) is widely taken as evidence for antigen selection. Stereotyped VH CDR3 sequences are often defined by the selective association of certain immunoglobulin heavy diversity (IGHD) genes in specific reading frames with certain immunoglobulin heavy joining (IGHJ ) genes. To gain insight into the mechanisms underlying VH CDR3 restrictions and also determine the developmental stage when restrictions in VH CDR3 are imposed, we analyzed partial IGHD-IGHJ rearrangements (D-J) in 829 CLL cases and compared the productively rearranged D-J joints (that is, in-frame junctions without junctional stop codons) to (a) the productive immunoglobulin heavy variable (IGHV )-IGHD-IGHJ rearrangements (V-D-J) from the same cases and (b) 174 D-J rearrangements from 160 precursor B-cell acute lymphoblastic leukemia cases (pre-B acute lymphoblastic leukemia [ALL]). Partial D-J rearrangements were detected in 272/829 CLL cases (32.8%). Sequence analysis was feasible in 238 of 272 D-J rearrangements; 198 of 238 (83.2%) were productively rearranged. The D-J joints in CLL did not differ significantly from those in pre-B ALL, except for higher frequency of the IGHD7-27 and IGHJ6 genes in the latter. Among CLL carrying productively rearranged D-J, comparison of the IGHD gene repertoire in productive V-D-J versus D-J revealed the following: (a) overuse of IGHD reading frames encoding hydrophilic peptides among V-D-J and (b) selection of the IGHD3-3 and IGHD6-19 genes in V-D-J junctions. These results document that the IGHD and IGHJ gene biases in the CLL expressed VH CDR3 repertoire are not stochastic but are directed by selection operating at the immunoglobulin protein level.  相似文献   

10.
Studies of human and murine T cells have shown that public TCR beta-chain rearrangements can dominate the Ag-specific and naive repertoires of distinct individuals. We show that mouse T cells responding to the minor histocompatibility Ag HYDbSmcy share an invariant Vbeta8.2-Jbeta2.3 TCR gene rearrangement. The dominance of this rearrangement shows that it successfully negotiated thymic selection and was highly favored during clonal expansion in all animals examined. We hypothesized that such beta-chains are advantaged during thymic and/or peripheral selection and, as a result, may be over-represented in the naive repertoire. A sequencing study was undertaken to examine the diversity of Vbeta8.2-Jbeta2.3 CDR3 loops from naive T cell repertoires of multiple mice. Public TCR beta-chain sequences were identified across different repertoires and MHC haplotypes. To determine whether such public beta-chains are advantaged during thymic selection, individual chains were followed through T cell development in a series of novel bone marrow competition chimeras. We demonstrate that beta-chains were positively selected with similar efficiency regardless of CDR3 loop sequence. Therefore, the establishment and maintenance of public beta-chains in the periphery is predominantly controlled by post-thymic events through modification of the primary, thymus-derived TCR repertoire.  相似文献   

11.
In this work, to study the emergence of the H chain V region repertoire during mammalian evolution, we present an analysis of 25 independent H chain V regions from a monotreme, the Australian duck-billed platypus, Ornithorhynchus anatinus. All the sequences analyzed were found to form a single branch within the clan III of mammalian V region sequences in a distance tree. However, compared with a classical V gene family this branch was more diversified in sequence. Sequence analysis indicates that the apparent lack of diversity in germline V segments is well compensated for by relatively long and highly diversified D and N nucleotides. In addition, extensive sequence variation was observed in the framework region 3. Furthermore, at least five and possibly seven different J segments seem to be actively used in recombination. Interestingly, internal cysteine bridges in the complementarity-determining region (CDR)3 loop, or between the CDR2 and CDR3 loops, are found in approximately 36% of the platypus V(H) sequences. Such cysteine bridges have also been observed in cow, camel, and shark. Internal cysteine bridges may play a role in stabilizing long and diversified CDR3 and thereby have a role in increasing the affinity of the Ab-Ag interaction.  相似文献   

12.
Chronic lymphocytic leukemia (CLL) cells that use IgH encoded by IGHV3-21 and that have a particular stereotypic third CDR (HCDR3), DANGMDV (motif-1), almost invariably express Ig L chains (IgL) encoded by IGLV3-21, whereas CLL that use IGHV3-21-encoded IgH with another stereotypic HCDR3, DPSFYSSSWTLFDY (motif-2), invariably express κ-IgL encoded by IGKV3-20. This nonstochastic pairing could reflect steric factors that preclude these IgH from pairing with other IgL or selection for an Ig with a particular Ag-binding activity. We generated rIg with IGHV3-21-encoded IgH with HCDR3 motif-1 or -2 and IgL encoded by IGKV3-20 or IGLV3-21. Each IgH paired equally well with matched or mismatched κ- or λ-IgL to form functional Ig, which we screened for binding to an array of different Ags. Ig with IGLV3-21-encoded λ-IgL could bind with an affinity of ~ 2 × 10(-6) M to protein L, a cell-wall protein of Peptostreptococcus magnus, independent of the IgH, indicating that protein L is a superantigen for IGLV3-21-encoded λ-IgL. We also detected Ig binding to cofilin, a highly conserved actin-binding protein. However, cofilin binding was independent of native pairing of IgH and IgL and was not specific for Ig with IgH encoded by IGHV3-21. We conclude that steric factors or the binding activity for protein L or cofilin cannot account for the nonstochastic pairing of IgH and IgL observed for the stereotypic Ig made by CLL cells that express IGHV3-21.  相似文献   

13.
How positive selection molds the T cell repertoire has been difficult to examine. In this study, we use TCR-beta-transgenic mice in which MHC shapes TCR-alpha use. Differential AV segment use is directly related to the constraints placed on the composition of the CDR3 loops. Where these constraints are low, efficient selection of alphabeta pairs follows. This mode of selection preferentially uses favored AV-AJ rearrangements and promotes diversity. Increased constraint on the alpha CDR3 loops leads to inefficient selection associated with uncommon recombination events and limited diversity. Further, the two modes of selection favor alternate sets of AJ segments. We discuss the relevance of these findings to the imprint of self-MHC restriction and peripheral T cell activation.  相似文献   

14.
Preferential utilization of JH and D genes has been demonstrated in the rearranged IgH chain in human peripheral B cells. We report here that the same hierarchy of JH gene usage is observed in leukemic cells arrested in the B precursor stage of differentiation. Specifically, JH4 and JH6 accounted for 42.9% and 35.7%, respectively, of the JH gene usage in the leukemias compared with an expected frequency of 16.7% assuming unbiased gene usage. Within the D gene families, the DN1 gene appears to be overutilized in both populations, representing about 15% of the total gene usage compared with an expected frequency of 3.2%. Because 21 of the 36 leukemias contained only nonproductive IgH rearrangements, the preferential gene usage could not have arisen from pre-B cells that have undergone clonal selection after a productive rearrangement but before surface Ig expression. Nonproductive rearrangements exhibited the biased gene usage seen for productive rearrangements. These findings suggest that a recombination bias favoring certain segments may be the actual mechanism responsible for the apparent preferential utilization of JH and D genes.  相似文献   

15.
The CDR3 of the Ig H chain (CDR3(H)) is significantly different in fetal and adult repertoires. To understand the mechanisms involved in the developmental changes in the CDR3(H) of Ig H chains, sets of nonproductive V(H)DJ(H) rearrangements obtained from fetal, full-term neonates and adult single B cells were analyzed and compared with the corresponding productive repertoires. Analysis of the nonproductive repertoires was particularly informative in assessing developmental changes in the molecular mechanisms of V(H)DJ(H) recombination because these rearrangements did not encode a protein and therefore their distribution was not affected by selection. Although a number of differences were noted, the major reasons that fetal B cells expressed Ig H chains with shorter CDR3(H) were both diminished TdT activity in the DJ(H) junction and the preferential use of the short J(H) proximal D segment D7-27. The enhanced usage of D7-27 by fetal B cells appeared to relate to its position in the locus rather than its short length. The CDR3(H) progressively acquired a more adult phenotype during ontogeny. In fetal B cells, there was decreased recurrent DJ(H) rearrangements before V(H)-DJ(H) rearrangement and increased usage of junctional microhomologies both of which also converted to the adult pattern during ontogeny. Overall, these results indicate that the decreased length and complexity of the CDR3(H) of fetal B cells primarily reflect limited enzymatic modifications of the joins as well as a tendency to use proximal D and J(H) segments during DJ(H) rearrangements.  相似文献   

16.
Due to the greater range of lengths available to the third complementarity determining region of the heavy chain (HCDR3), the Ab repertoire of normal adults includes larger Ag binding site structures than those seen in first and second trimester fetal tissues. Transition to a steady state range of HCDR3 lengths is not complete until the infant reaches 2 mo of age. Fetal constraints on length begin with a genetic predilection for use of short DH (D7-27 or DQ52) gene segments and against use of long DH (e.g., D3 or DXP) and JH (JH6) gene segments in both fetal liver and fetal bone marrow. Further control of length is achieved through DH-specific limitations in N addition, with D7-27 DJ joins including extensive N addition and D3-containing DJ joins showing a paucity of N addition. DH-specific constraints on N addition are no longer apparent in adult bone marrow. Superimposed upon these genetic mechanisms to control length is a process of somatic selection that appears to ensure expression of a restricted range of HCDR3 lengths in both fetus and adult. B cells that express Abs of an "inappropriate" length appear to be eliminated when they first display IgM on their cell surface. Control of N addition appears aberrant in X-linked agammaglobulinemia, which may exacerbate the block in B cell development seen in this disease. Restriction of the fetal repertoire appears to be an active process, forcing limits on the diversity, and hence range of Ab specificities, available to the young.  相似文献   

17.
Polymerase chain reaction-amplified cDNA libraries of the IgH genes of fetal, young adult, and aged BALB/c mice were sequenced so that the complimentarity determining region 3 (CDR3) in each could be analyzed. The results show extensive diversity in the CDR3 region in all three libraries examined. A prominent feature of the fetal repertoire is the lack of nucleotide region additions and shorter germline-derived D segments compared with the adult repertoires. Also of interest were distinct differences in D family and JH usage in the three libraries representing different stages of ontogeny. The absence of DFL16.2 in the fetal sequences analyzed was of particular note. Also of note was a substantial underutilization of the largest D family, DSP2, in the aged repertoire. The study provides further evidence that the Ig repertoire is developmentally regulated. In addition, the results indicate that several aspects of the recombination process are different in adult and fetal B lineage cells, suggesting that B cells present early in ontogeny are distinct from those present in the adult.  相似文献   

18.
We have analysed the transcribed immunoglobulin kappa (IGK) repertoire of peripheral blood B cells from four individuals from two genetically distinct populations, Papua New Guinean and Australian, using high-throughput DNA sequencing. The depth of sequencing data for each individual averaged 5,548 high-quality IGK reads, and permitted genotyping of the inferred IGKV and IGKJ germline gene segments for each individual. All individuals were homozygous at each IGKJ locus and had highly similar inferred IGKV genotypes. Preferential gene usage was seen at both the IGKV and IGKJ loci, but only IGKV segment usage varied significantly between individuals. Despite the differences in IGKV gene utilisation, the rearranged IGK repertoires showed extensive identity at the amino acid level. Public rearrangements (those shared by two or more individuals) made up 60.2% of the total sequenced IGK rearrangements. The total diversity of IGK rearrangements of each individual was estimated to range from just 340 to 549 unique amino acid sequences. Thus, the repertoire of unique expressed IGK rearrangements is dramatically less than previous theoretical estimates of IGK diversity, and the majority of expressed IGK rearrangements are likely to be extensively shared in individual human beings.  相似文献   

19.
Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.  相似文献   

20.
How the naive T cell repertoire arises and forms the memory repertoire is still poorly understood. This relationship was analyzed by taking advantage of the focused TCR usage in HLA-A2-restricted CD8 memory T cell responses to influenza M1(58-66). We analyzed rearranged BV19 genes from CD8 single-positive thymocytes, a surrogate for the naive repertoire, from 10 HLA-A2 individuals. CDR3 amino acid sequences associated with response to influenza were observed at higher frequencies than expected by chance, an indicator of preselection. We propose that a rearrangement mechanism involving long P-nucleotide addition from the J2.7 region explains part of this increase. Special rearrangement mechanisms can result in identical T cells in different individuals, referred to as public responses. Indeed, the rearrangements utilizing long P nucleotide additions were commonly observed in the response to the M1(58-66) epitope in 30 HLA-A2 middle-aged adults. Thus, in addition to negative and positive selection, special rearrangement mechanisms may influence the composition of the naive repertoire, resulting in more robust responses to a pathogen in some individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号