首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTEN function in mammalian cell size regulation   总被引:21,自引:0,他引:21  
The PTEN tumor suppressor gene is a lipid phosphatase that negatively regulates cell survival mediated by the phosphatidyl inositol 3' kinase-protein kinase B/Akt signaling pathway. Recent in vivo studies have revealed a novel role for PTEN in the size control of neurons. Dysregulation of cell growth control by PTEN is associated with the neurological disorder Lhermitte-Duclos disease. PTEN may regulate cell size through effects on protein translation.  相似文献   

2.
Follicle cell regulation of mammalian oocyte growth   总被引:2,自引:0,他引:2  
To investigate mechanisms of follicle cell control on mammalian oocyte growth, preantral mouse oocytes free from surrounding follicle cells were individually cocultured with monolayers of different somatic cells competent to form gap junctions, and the rate of in vitro oocyte growth was directly correlated with the level of metabolic coupling on the same cells. The results indicate that 1) at a similar extent of metabolic coupling, mouse oocytes grew on follicle cells but not on 3T3 and Sertoli cell monolayers, and 2) the growth rate of oocytes cultured on follicle cells was dependent on the extent of metabolic coupling. It was concluded that gap-junction-mediated nutrition of ovarian mouse oocytes exerted by somatic cells is necessary but not sufficient to maintain oocyte growth. A specific regulatory role of follicle cells on mammalian oocyte growth is proposed.  相似文献   

3.
The study of normal mammalian cell growth and the defects that contribute to disease pathogenesis links metabolism to cell growth. Here, we visit several aspects of growth-promoting metabolism, emphasizing recent advances in our understanding of how alterations in glucose metabolism affect cytosolic and mitochondrial redox potential and ATP generation. These alterations drive cell proliferation not only through supporting biosynthesis, energy metabolism, and maintaining redox potential but also through initiating signaling mechanisms that are still poorly characterized. The evolutionary basis of these additional layers of growth control is also discussed.  相似文献   

4.
5.

Background  

Conlon and Raff propose that mammalian cells grow linearly during the division cycle. According to Conlon and Raff, cells growing linearly do not need a size checkpoint to maintain a constant distribution of cell sizes. If there is no cell-size-control system, then exponential growth is not allowed, as exponential growth, according to Conlon and Raff, would require a cell-size-control system.  相似文献   

6.
This work describes mathematically the dynamics of expansion of cell populations from the initial division of single cells to colonies of several hundred cells. This stage of population growth is strongly influenced by stochastic (random) elements including, among others, cell death and quiescence. This results in a wide distribution of colony sizes. Experimental observations of the NIH3T3 cell line as well as for the NIH3T3 cell line transformed with the ras oncogene were obtained for this study. They include the number of cells in 4-day-old colonies initiated from single cells and measurements of sizes of sister cells after division, recorded in the 4-day-old colonies. The sister cell sizes were recorded in a way which enabled investigation of their interdependence. We developed a mathematical model which includes cell growth and unequal cell division, with three possible outcomes of each cell division: continued cell growth and division, quiescence, and cell death. The model is successful in reproducing experimental observations. It provides good fits to colony size distributions for both NIH3T3 mouse fibroblast cells and the same cells transformed with the rasEJ human cancer gene. The difference in colony size distributions could be fitted by assuming similar cell lifetimes (12-13 hr) and similar probabilities of cell death (q = 0.15), but using different probabilities of quiescence, r = 0 for the ras oncogene transformed cells and r = 0.1 for the non-transformed cells. The model also reproduces the evolution of distributions of sizes of cells in colonies, from a single founder cell of any specified size to the stable limit distribution after eight to ten cell divisions. Application of the model explains in what way both random events and deterministic control mechanisms strongly influence cell proliferation at early stages in the expansion of colonies.  相似文献   

7.
8.
9.
A response to Cooper S: Control and maintenance of mammalian cell size. BMC Cell Biol 2004, 5:35  相似文献   

10.
A model of cell size regulation   总被引:4,自引:0,他引:4  
  相似文献   

11.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

12.
The energetics of mammalian cell growth   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
《Molecular cell》2022,82(15):2797-2814.e11
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
17.
18.
19.
The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.  相似文献   

20.
Osmosensing and signaling in the regulation of mammalian cell function   总被引:1,自引:0,他引:1  
Volume changes of mammalian cells as induced by either anisoosmolarity or under isoosmotic conditions by hormones, substrates and oxidative stress critically contribute to the regulation of metabolism, gene expression and the susceptibility to stress. Osmosensing (i.e. the registration of cell volume) triggers signal transduction pathways towards effector sites (osmosignaling), which link alterations of cell volume to a functional outcome. This minireview summarizes recent progress in the understanding of how osmosensing and osmosignaling integrate into the overall context of growth factor signaling and the execution of apoptotic programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号